
Test and Training ENabling

Architecture (TENA)

TENA BASELINE PROJECT REPORT

Volume IV
Technical Reference Architecture

Under Secretary of Defense (Acquisition & Technology)
Director, Test, Systems Engineering and Evaluation
Office of Resources and Ranges
Central Test & Evaluation Investment Program
Pentagon (Room 3D1067)
Washington, DC 20301-3110
September, 1997

Volume IV Technical Reference Architecture ii

Abstract
The purpose of TENA is to affordably and effectively utilize processes and technologies to enable
sharing, reuse and interoperability between test and training ranges and resources. This document
describes the TENA architecture that will support this purpose.

 An architecture is a fundamental and important part of a development approach, which supports
reusability of components and the interoperation of diverse systems distributed over multiple platforms
and facilities. Development experience has shown the utility of basing architecture upon a Technical
Reference Architecture (TRA), in particular in systems where a number of facilities that perform
different functions must standardize their implementations to achieve goals such as those that TENA is
striving for. The TRA is the mechanism to insure that basic system level requirements critical to
interoperability, composability, and reuse are satisfied even when applied to a number of different
system architectures. TENA is based on the concept of definition of a TRA that is instantiated as
needed to form the core infrastructure for system architectures that serve different T&E and training
facilities. The TENA TRA is composed of an Object Model, a TENA Core, and Standards and
Protocols. Each of theses are presented in a format most amenable to a clear understanding of their
function.

The Object Model represents several views of reality (Test and Training Ranges) that are recognizable
and meaningful to range users. The view presented here is primarily a structural model. The TENA
Object Model is composed of Classes and the Methods that are available to manipulate or use instances
of those classes. In their totality, they comprise the pieces from which a logical range is constructed.
The Model is presented in a hierarchical graphical structure accompanied by clarifying text. We have
concentrated more on open-air ranges in the initial analysis because of availability of information and
cognizant personnel. As we proceed the analysis will extend across the entirety of the domain of T&E
and training facilities.

The TENA Core capabilities provide a means for range components to communicate with each other
and also mechanisms for the management of the coordinated operation of an instance of the logical
range. They are presented in a format that provides a description of each core component (information
management infrastructure services and core applications). Certain capabilities that are required for
complete TENA operation are presented and defined as Mandatory Applications within the TENA
Core. A discussion of the TENA architecture as compared to HLA is also provided. The complete
technical details of the services (parameters, exceptions, pre and post conditions, use cases) are
contained in Appendix C. Full details of the TENA Core will be elaborated via a series of experiments
and prototypes which explore and validate architectural concepts. These details will be provided as an
update to this document or released independently as part of the continuing exploratory work.

The Standards and Protocols provide for agreements on issues that support architectural requirements.
These involve data representation, communications protocols, supporting platform capabilities, and
processes. TENA standards activity has been focused on identification of available standards.

Volume IV Technical Reference Architecture iii

Selection has been largely deferred to development of system architectures and implementations.
Experiments and prototypes will allow us to evaluate candidate selections.

Communications standards are a key area of concern for TENA. TENA has supported a modest test
of the applicability of ATM technologies, specifically between Edwards Air Force Base and China
Lake. A report of this is provided in Volume X. Additional efforts to categorize representations of
open air range data, transfer characteristics, and potential standards is also under way at NAWC, China
Lake. Results will be incorporated into a revision of this document.

This document is intended for use by system developers, component designers, and other interested
parties.

Volume IV Technical Reference Architecture iv

The opinions, ideas and recommendations presented in the TENA Baseline Project Report are the views of the TENA Project
Team and do not necessarily represent those of the Sponsor.

Instructions to the Reader

The Test and Training ENabling Architecture (TENA) fiscal year 1997 Baseline Project
Report contains 10 volumes and an Executive Summary. This format provides several advantages.
For example, you need not read the detailed technical information in the Technical Reference
Architecture (Volume IV) unless you wish. We have provided an Executive Summary which should
be read by DoD range management executives and others in a decision-making role. It should also be
read as a companion volume to technical volumes. The Management Overview contains enough
information from the remaining technical volumes to gain a good understanding of the TENA project
background, accomplishments to date, and plans for the future. Additionally, Volume IX, Glossary of
Terms and Definitions and Volume X, Other Supporting Information, are intended as companion
reference volumes for the reader.

Each volume contains an abstract (all are presented in an appendix to the Executive
Summary), Table of Contents, Overview, Introduction, and TENA Project Background. The
Overview contains information related to the specific volume, identifies the expected readership, and
identifies any relationships with other volumes. The TENA Project Background is the same in each
volume. Technical volumes are intended to be “stand-alone” documents that will be upgraded as
more information becomes available. An acronym and reference listing, (appendices A and B in every
volume) is provided, but for detailed definitions and some cited references, the reader should consult
Volumes IX and X.

The TENA Project Baseline Report contains the volumes listed below:

Executive Summary
Volume I - Management Overview

Volume II - Product-Line Approach
Volume III - Requirements

Volume IV - Technical Reference Architecture
Volume V - Logical Range Business Process Model

 Volume VI - TENA Application Concepts
Volume VII - Integrated Validation and Verification Plan

Volume VIII - Transition Plan
Volume IX - Glossary of Terms and Definitions

Volume X - Other Supporting Information

Volume IV Technical Reference Architecture v

Table of Contents
1. OVERVIEW... 1

1.1 PURPOSE ... 1
1.2 READERSHIP.. 1
1.3 RELATIONSHIP TO OTHER VOLUMES ... 1

1.4 TENA PROJECT BACKGROUND.. 2

1.4.1PROJECT NEED ... 2
1.4.2 PROJECT PURPOSE .. 2
1.4.3 PROJECT HISTORY .. 2
1.4.4 STATUS ... 3

2. INTRODUCTION.. 4

2.1 ARCHITECTURE DEVELOPMENT PROCESS.. 4
2.2 ARCHITECTURE IMPLEMENTATION ... 5
2.3 ARCHITECTURAL CONSTITUENTS ... 7
2.4 PRINCIPLES OF THE ARCHITECTURE .. 10

2.4.1 Constrained Composition .. 10
2.4.2 Dynamic, Run-time Characterization.. 10
2.4.3 Subscription Service ... 11
2.4.4 Controlled Information Access ... 11
2.4.5 Negotiated Quality of Service ... 11

2.5 HIGH LEVEL SYSTEM ARCHITECTURE VIEW... 12
2.5.1 The TENA Enterprise.. 12
2.5.2 The Facility .. 14

3.0 TENA OBJECT MODEL.. 16

3.1 INTRODUCTION ... 16
3.1.1 Reducing software development and maintenance cost. (Reuse)... 16
3.1.2 Utilizing common instrumentation at multiple facilities. (Reuse, Interoperability, and Sharing) 16

3.1.3 RESPONDING TO THE INCREASED DEMAND FOR MULTIPLE-SITE EXERCISES AND/OR EXERCISES WHICH CROSS T&E/TRAINING

OR LIVE/VIRTUAL/CONSTRUCTIVE BOUNDARIES. (INTEROPERABILITY AND SHARING) ... 16
3.1.4 RESPONDING TO THE INCREASED DEMAND FOR CONSISTENCY OF INFORMATION BETWEEN FACILITIES AND ACROSS PHASES OF

THE ACQUISITION PROCESS. (SHARING)... 17
3.1.5 CAPTURING CRITICAL DATA TO SUPPORT INFORMED CUSTOMER AND MANAGEMENT DECISIONS ABOUT RESOURCE NEEDS,
CAPABILITIES, AND INVESTMENTS. (SHARING)... 17
3.1.6 INSTANCE OF THE MISSION SPACE.. 19
3.1.7 SECONDARY RESOURCES... 19

3.1.8 Logistic Resources... 19
3.2 THE TENA OBJECT MODEL DIAGRAM ... 20

3.2.1 Customer ... 21
3.2.2 Logical Range Support Tool .. 22
3.2.3 Logical Range Test/Training Exercise ... 22
3.2.4 Logical Range Scenario... 22
3.2.5 Mission Space.. 22
3.2.6 Logical Range Resources... 23
3.2.7 Participant .. 24
3.2.8 Environment .. 24

3.2.8.1 Natural .. 25

Volume IV Technical Reference Architecture vi

3.2.8.2 Tactical.. 25
3.2.8.3 Political ... 25
3.2.8.4 Doctrinal.. 25

3.2.9 Event ... 25
3.2.10 Logical Range Resources... 26

3.2.10.1 Open Air T&E/Training Range... 26
3.2.10.2 Simulation (Digital Models and Computer Simulations - DMS).. 27
3.2.10.3 Integration Laboratories ... 27
3.2.10.4 Installed Systems Test Facilities (ISTF).. 28
3.2.10.5 Hardware in the Loop (HITL)... 28
3.2.10.6 Measurement Facilities (MF) ... 29

3.2.11 Secondary Resources ... 30
3.2.12 Logistics .. 31

3.2.12.1 Financial.. 31
3.2.12.2 Communications Assets ... 31
3.2.12.3 Computer Assets .. 32
3.2.12.4 Personnel ... 32

3.2 13 Secondary Resources ... 33
3.2.13.1 Sensors .. 33

3.2.14 Stimulators .. 37
3.2.15 Analyzers... 38

3.3 INFORMATION PRESENTER INTRODUCTION ... 39
3.4 INFORMATION PRESENTER DESCRIPTION .. 45

3.4.1 Class Name: Information Presenter .. 45
3.4.2 Class Name: Checkbox Group ... 45
3.4.3 Class Name: Color .. 45
3.4.4 Class Name: Component.. 47

3.4.4.1 Class Name: Button ... 50
3.4.4.2 Class Name: Canvas... 51
3.4.4.3 Class Name: Checkbox... 51
3.4.4.4 Class Name: Choice ... 52
3.4.4.5 Class Name: Container... 53
3.4.4.6 Class Name: Label ... 58
3.4.4.7 Class Name: List.. 59
3.4.4.8 Class Name: Scrollbar.. 60
3.4.4.9 Class Name: TextComponent ... 61

3.4.5 Class Name: Cursor .. 64
3.4.6 Class Name: Dimension... 64
3.4.7 Class Name: EventQueue .. 65
3.4.8 Class Name: Font .. 65
3.4.9 Class Name: FontMetrics .. 66
3.4.10 Class Name: Graphics ... 67
3.4.11 Class Name: GUIEvent.. 69
3.4.12 Class Name: GUIEventMulticaster .. 70
3.4.13 Class Name: Image.. 73
3.4.14 Class Name: Insets .. 74
3.4.15 Class Name: LayoutManager... 74
3.4.16 Class Name: MediaTracker ... 75
3.4.17 Class Name: MenuComponent ... 76

3.4.17.1 Class Name: MenuBar ... 76
3.4.17.2 Class Name: MenuItem .. 77

3.4.18 Class Name: MenuShortcut.. 80
3.4.19 Class Name: Point ... 80
3.4.20 Class Name: Polygon... 81
3.4.21 Class Name: PrintJob.. 81
3.4.22 Class Name: Rectangle.. 82

Volume IV Technical Reference Architecture vii

3.4.23 Class Name: Toolkit .. 83
3.4.24 Class Name: Video .. 85

3.5 EXAMPLE APPLICATION OF THE INFORMATION PRESENTER CLASS HIERARCHY... 86
3.5.1 Introduction... 86
3.5.2 Basic Assumptions ... 86
3.5.3 Example .. 89

4.0 TENA CORE.. 92

4.1 INTRODUCTION ... 92
4.2 PURPOSE OF THE TENA CORE .. 92
4.3 SAMPLE FACILITIES FUNCTIONAL PARTITIONS .. 93

Users/Operators:.. 94
Human Computer Interface: ... 95
Simulations: ... 95
TENA Core: ... 96

4.4 TENA AND THE HLA.. 96
4.5 DESCRIPTION OF THETENA CORE ... 97

4.5.1 Introduction... 97
4.5.2 Information Management Services... 98

4.5.2.1 System Information Model ... 98
4.5.2.2 Distribution Services:.. 104
4.5.2.3 Message Services... 110
4.5.2.4 Connection Services... 113
4.5.2.5 Clock Services ... 116
4.5.2.6 Infrastructure Support Objects.. 118

4.5.3 Mandatory Application Programs...118
4.5.3.1 Network Manager .. 119
4.5.3.2 Asset Manager ... 122
4.5.3.3 Execution Manager .. 129
4.5.3.4 Initialization Manager .. 131

4.5.4 Recommended Application Programs ...134
4.5.4.1 Applications to Support Management of Logical Time.. 134

4.6 RELATIONSHIP OF TENA TO HLA...135
4.6.1 Introduction..135
4.6.2 Overall Architecture Similarities ..136
4.6.3 HLA and TENA Service Groups..137
4.6.4 Infrastructure Service Similarities ..138
4.6.5 Significant Infrastructure Service Differences...139
4.6.6 Function Mappings to Service Groups ..141

5.0 STANDARDS AND PROTOCOL ..142

APPENDIX A-ACRONYMS ... 1

APPENDIX B-REFERENCES .. 1

APPENDIX C-TENA CORE CAPABILITIES DETAILS ... 1

APPENDIX D-APPLICATION PROGRAM INTERFACE (API) TO DISTRIBUTION SERVICES 1

APPENDIX E-TENA OBJECT MODEL DIAGRAMS ... 1

Table 1. Summary of TENA and HLA Functions ..141
Table 2. Atlantic Fleet Weapons Training Facility (AFWTF) Digital Data Standards..143
Table 3. Miscellaneous Standards and Protocols..144

Volume IV Technical Reference Architecture viii

Table 4. Communication Services Relationship to TENA..144
Table 5 – Distributed Computing Services Relationship to TENA...147
Table 6. Data Interchange Services Relationship to TENA..148
Table 8 – Graphics Services Relationship to TENA...153
Table 9. Internationalization Services Relationship to TENA..154
Table 10. Operating System Services Relationship to TENA...156
Table 11. Software Engineering Services Relationship to TENA...158
Table 12 – System Management Services Relationship to TENA ..162
Table 14 – Security Services Relationship to TENA..164
Table 15 – User Interface Services Relationship to TENA...170
Table 16. JTA Standards...172
Table 17. Range Commanders Council Standards and Protocol Source Documents ...188

TABLE OF FIGURES
Figure 1. Effects of Design Decisions... 4
Figure 2. System Architectures... 5
Figure 3 Factors Influencing Design ... 6
Figure 4. Implementation Perspective View ... 8
Figure 5. Domain Model .. 9
Figure 6. The TENA Enterprise ... 13
Figure 7. A TENA Compliant System.. 14
Figure 8. CTTRA Functional Architecture ... 18
Figure 9. TENA OM-Level Zero .. 21
Figure 10. Mission Space Class.. 24
Figure 11. Logical Range Resources Class ... 26
Figure 12. Logical Range Resource Class (Expanded).. 30
Figure 13. Logistics Class .. 31
Figure 14. Secondary Resource Class ... 33
Figure 15. Sensor Class.. 34
Figure 16. Stimulator Class.. 37
Figure 17. Information Presenter Class (1) ... 41
Figure 18. Information Presenter (2) .. 41
Figure 19. Information Presenter (3) .. 42
Figure 20. Information Presenter (4) .. 42
Figure 21. Information Presenter Class (5) ... 43
Figure 22. Component Class (1)... 43
Figure 23. Component Class(2)... 44
Figure 24. Menu Component Class ... 44
Figure 25. Grids Display Screen (1) .. 87
Figure 26. GRIDS Display Screen (2) ... 87
Figure 27. GRIDS Display Screen (3) ... 88
Figure 28. GRIDS/Info. Presenter Relationship (1).. 89
Figure 29. Info. Presenter Example ... 90
Figure 30. GRIDS/Info. Presenter Relationship (1).. 90
Figure 31. GRIDS/Info. Presenter Relationship (2).. 91
Figure 32. GRIDS/Info. Presenter Relationship (3).. 91
Figure 33. TENA Core.. 92
Figure 34. Conceptual Model of the TENA Core... 93
Figure 35. Sample Functional Partitions.. 94
Figure 36 System Procedural Interfaces..100
Figure37. Distribution Service - Services Provided...106
Figure 38. Distribution Service Interfaces ..110
Figure 39. Message Service - Services Provided ...112

Volume IV Technical Reference Architecture ix

Figure 40. Message Service Interfaces..113
Figure 41. Connection Service - Services Provided...114
Figure 42. Connection Service Interfaces ...116
Figure 43. Clock Service - Services Provided ...117
Figure 44. Clock Service Interfaces ..118
Figure 45. Network Manager Interfaces ...121
Figure 46. Asset Manager - Services Provided...127
Figure 47. Execution Manager - Services Provided ..130
Figure 48. Bridge from TENA to HLA...135

Volume IV Technical Reference Architecture 1

1. Overview

1.1 Purpose

This definition of the TENA Technical Reference Architecture describes the foundation upon which
the logical range will operate. It defines:

n The component parts (assets) from which the logical range exercise is constructed (Object Model) and
the relationships between them,

n The capabilities provided to manage system components, conduct a logical range exercise, and share
data (TENA Core capabilities),

n Agreed upon conventions about data representation, communications methods, platform support tools
and capabilities, and processes among the facilities and component implementations (Standards and
Protocols).

It is applicable to both new facilities and systems designed to be TENA compliant and also to existing
legacy systems that interoperate with the TENA Enterprise or will migrate toward TENA compliancy
in a planned step-by-step manner. The TENA Enterprise is the set of facilities interoperating via
infrastructure services provided by TENA.

1.2 Readership

This document is intended for use by system developers, component designers and other interested
parties. It is technical in nature and by necessity presents its information in detail. The three
components of the architecture (Object Model, TENA Core capabilities, Standards and Protocols) are
presented separately with overviews and introductions. The reader who wishes to understand the
architecture being presented, but not become involved in the myriad of details, may read the
introduction and overviews of each section and progress to the details only when interested.

1.3 Relationship to other Volumes

This TRA meets the requirements defined in Volume III, TENA Requirements. The Logical Range
Business Process Model (LRBPM), Volume V, defines a process to utilize the architectural features to
define, plan, schedule, execute and close out an exercise. Volume VI, TENA Application Concepts,
describes how the LRBPM and object structures of the TRA work together to support the Logical
Range concept. Volume II (Product Line Approach), Volume VII (Integrated Validation and
Verification Plan), and Volume VIII (Transition Plan) discuss the support, validation and transition to
TENA.

Volume IV Technical Reference Architecture 2

1.4 TENA PROJECT BACKGROUND

1.4.1PROJECT NEED

TENA is part of a coordinated response by the Central Test and Evaluation Investment Program
(CTEIP) office to several current and emerging challenges in the test and training range and resource
community. These challenges include:

n Reducing software development and maintenance cost,

n Utilizing common instrumentation at multiple facilities,

n Responding to the increased demand for multiple-site exercises and/or exercises which cross
T&E/training or live/virtual/constructive boundaries,

n Responding to the increased demand for consistency of information between facilities and across
phases of the acquisition process, and

n Capturing critical data to support informed customer and management decisions about resource needs,
capabilities, and investments.

1.4.2 PROJECT PURPOSE

The purpose of the TENA project is to respond to these challenges through the establishment of an
architecture that efficiently and effectively fosters the sharing, reuse, and interoperability between
cooperating Department of Defense (DoD) test ranges and facilities, training ranges, laboratories, and
other modeling and simulation activities. The expected synergism will permit efficient and effective
testing of new and enhanced weapons systems and will vastly improve the scope and fidelity of
worldwide joint/combined training.

1.4.3 PROJECT HISTORY

The Test and Training ENabling Architecture (TENA) project concept was formulated in FY95 by a
multi-Service working group. This concept was endorsed by the Test and Evaluation Reliance
Investment Board (TERIB), the Board of Operating Directors (BoOD), and the Test and Evaluation
Resource Council (TERC).

The Navy is the CTEIP Resource Manager for this project, and has established a Joint Project Office
(JPO) for the management of project activities at the Naval Undersea Warfare Center (NUWC)
Division, Newport, RI.

Shortly after assembly of the Joint Service Team, several critical observations were made:

n The key to interoperability is not connectivity alone, but rather understanding communications content.
This is best promoted by defining an open, object-oriented software architecture that could be used by
both legacy and newly built systems.

Volume IV Technical Reference Architecture 3

n The process used to plan, schedule, and otherwise coordinate a multiple-facility, multiple-service
exercise must be integral to the development of the architecture, or the capabilities it offers might never
be fully utilized.

n The architecture must be conducive to refinement over time and coexists with facility-unique
applications. This requires a disciplined architecture development/refinement process. The team
adapted the Defense Information Systems Agency (DISA) domain-engineering approach to help
develop the architecture and recommends the Product-Line Approach for implementation and life-cycle
maintenance.

n Significant investments are being made in other closely related areas such as, Defense Modeling and
Simulation Office (DMSO), High Level Architecture (HLA) and the Joint Simulation System (JSIMS)
program. TENA must leverage as many of these efforts as practical.

n The TENA concept is radically new to our community. Planning for transition is key to its ultimate
acceptance.

1.4.4 STATUS

The project team tested its architecture development process in FY96 producing a “Pilot
Architecture.” This work was reviewed in several public forums. These reviews were highly
supportive of TENA’s effort. Two consistent suggestions were that TENA should focus first “on
breadth, not depth”, and that there should be more emphasis on “problem-space vs. solution-space”.
These considerations and additional engineering effort has resulted in this refined “Baseline
Architecture.”

The TENA Baseline contains sufficient detail to continue further analysis and risk reduction efforts and
is a good vehicle for discussion, experimentation, and refinement. It is not yet appropriate to use these
documents as the blueprint for a major system development. After community feedback, results from
risk-reduction prototypes, experiments, and other ongoing efforts are synthesized, the cognizant
TENA Baseline documents will be updated as “TENA Rev 0.” TENA Rev. 0 will be the appropriate
source of design information for a TENA-compliant system implementation.

Volume IV Technical Reference Architecture 4

2. Introduction

2.1 Architecture Development Process

The architecture described in this document establishes a basis for a line of products that integrate
training and test and evaluation facilities. It provides levels of structural detail and coordination
protocols that allow the facilities to function as an integrated system in a well-coordinated, efficient
way and to allow them to schedule and share assets. Enterprise level common characteristics and
requirements were extracted from the test and training domain and used in developing the TRA.. The
approach TENA will follow is to use the TRA as a means of satisfying enterprise level concerns with
instances of this architecture forming the basic structure which is then extended by various system
architectures that satisfy lower level concerns.

The TRA is an abstract architecture that provides the structure and coordination capabilities that form
the essential foundation around which a complete system architecture will be built. The TRA addresses
specifically the requirements that derive from enterprise wide concerns. The TRA is, in effect, an
architecture class that is extended by specific system architectures. The inheritance of TRA capabilities
by its subclasses (system architectures) is the means by which system wide design decisions are
enforced. The current TRA imposes a structure that will be inherited by all future system architectures
(such as those for OARs, ISTFs, HITLs or other facilities).

The following diagram provides an illustration of the collection of design decisions, system
information, and how that relates to architectural constructs.

A

B

Technical
Reference

Architecture

System
Architecture

Design &
Implementation

Decisions

Implementation

Figure 1. Effects of Design Decisions

Volume IV Technical Reference Architecture 5

The large triangle shown represents the complete collection of design and implementation decisions
made about a system within its boundaries. The decisions are sorted so that the most powerful, that is,
the decisions that have the greatest effect on the system are located towards the apex and the more
local decisions that affect relatively small parts of the system sort towards the base. The region marked
A roughly indicates that if a decision was represented as being at the apex of the triangle for A the parts
of the system affected lie below it in a similar triangle. The region marked B indicates the same thing
but for a decision which is less general and powerful than the decision at A. . The base of the triangle
represents the implementation of the system which contains all of the information about the system. An
architecture is nothing more than some collection of design decisions about the structure or
coordination of a system. Those decisions act as constraints on the further design and implementation
of the system. The concern is to make sure that the right set of decisions has been incorporated into
the architecture, yet to incorporate a minimal set to prevent designers from being excessively
constrained that precludes innovation.

This concept applied to the TENA domain (Figure 2) illustrates where various architectures are
situated within this hierarchy and how they relate to each other.

Technical
Reference

Architecture

System
Architectures Design &

Implementation
Decisions

Implementation

O
A

R

IS
T

F

H
IT

L

M
F

Figure 2. System Architectures

2.2 Architecture Implementation

An architecture can be represented as a horizontal line across the triangle shown above with decisions
incorporated into the architecture contained in the region above the line. In actuality this is not a
straight line but more of an irregular line with peaks and valleys. These peaks and valleys would
represent the current progress that has been made regarding decisions based on current knowledge of
the domain and requirements of the system architectures that will follow. For example, some class
structures are global and included in the TRA, while others will be developed later as more information
is gathered specific to the system architectures of the TENA Enterprise. In Figures 1 and 2, one line is
depicted for the TRA and another, further down, for a system architecture. This simply shows that the
TRA is itself an architecture, but one which deals with the highest level, highest leverage, most
systemically important decisions about the system. The system architecture is realized by adding to the

Volume IV Technical Reference Architecture 6

decisions in the TRA additional decisions that further constrain the implementation to meet important
goals and requirements applicable to the specific system being defined. The regions in Figure 2 capture
the impact of decisions at various levels in the hierarchy.

Technical Reference
Architecture

System Implementation

System Architecture

Driving
Architectural

Requirements

Adaptation
Instructions

Guidelines

Rules

Local
Agreements

Classes
Attributes
Methods

Data Representation
Standards

Data Communications
Standards

Hardware

Applications
Programs

Domain
Characteristics

Figure 3 Factors Influencing Design

Locating these lines, that is, determining which decisions to capture as an architecture, involves a series
of value judgments by the system architects. The important system issues, external constraints,
experience of the architects, etc. all influence where the lines fall. The line between the various levels is
shown as an exact, straight boundary. In reality, this line is somewhat fuzzy and irregular reflecting the
fact that architects proceed to make decisions to different levels in different parts of the system in
response to how strongly system goals are effected by different parts of the system. Certain classes
(with objects, attributes and methods), standards and guidelines are included within the TRA, and some
will be included in individual system architectures as these systems are analyzed, prototyped and
implemented as part of the TENA plan. Figure 3 provides a somewhat different view of the design
triangle. It indicates some of the factors which influence design at each of the levels depicted and how
they influence the progression from a technical reference architecture to a system architecture and
finally to the system’s implementation.

The architecture development process is entered with a set of highly derived requirements that respond
to the system requirements but are abstracted to a level where only the essential global issues are
addressed. Along with these requirements is a set of domain characteristics captured from an analysis
or based on the knowledge of expert designers experienced in the domain (Test and Training
Facilities). These form the basis for capturing the fundamental patterns of structure and coordination
which the TRA expresses. Additional factors are considered when determining characteristics of
system architectures and the realization of the implementation. The factors shown are illustrative and
not intended to be exhaustive.

Volume IV Technical Reference Architecture 7

Experienced designers know that in developing a large system one should also expect that the design
for the architecture which is developed at the start of system design will not survive unchanged
throughout the balance of system design and implementation. The validity of the architectural design is
proven by subsequent design and especially by building and testing parts of the system.

The Product Line Approach (Volume II) to system development is an integral part of the TENA
enterprise. Product lines usually arise when an organization realizes that it has repeatedly produced
systems (test and training facilities) that largely serve similar or related customer needs. The reality is
frequently that each system, although functionally similar to other systems, is implemented largely from
scratch with a unique design. The recognition that components of the various systems can be common
among those systems or derived from earlier systems suggests a means to reduce cost and time to
market. It also indicates a strategy for reducing variability and, consequently, improving maintainability
and reliability. Thus, most organizations evolve into product lines rather then decide to create product
lines from scratch.

The product line approach which TENA is following provides a systematic way to identify areas of
commonality and where essential system variability lies and exploit that knowledge to both leverage
system development (cost and effort) as well as to enforce policies for system qualities such as
interoperability. This approach recognizes the need to capitalize on legacy systems and incorporates
them or their parts as appropriate within a structure designed to accommodate existing systems.

2.3 Architectural Constituents

TENA is composed of three main constituents. These are the Object Model, the TENA Core, and
TENA standards and protocols. These three constituents work together to establish the following:

n A definition of the assets that make up the various facilities including their attributes and methods (as
appropriate).

n The manner in which assets and stakeholders associate with each other.

n The identity, structure, and representation of the information which the assets exchange.

n Services and core infrastructure for supporting information exchange and management of operations
and the business processes.

n Agreements about the representation of data, operation of communications resources, information
display capabilities, and procedures and processes.

The Object Model of TENA describes the structure of and dynamic relationships between components
of the resulting system. The Object Model as a whole includes multiple views or models of the system.
The discussion in section 3.0 is centered on the view that characterizes the domain or problem space.
Other models that will become incorporated over time include the implementation model of the system
(solution space), depicting the artifacts created as parts of the system, and the information model of the
system, discussed shortly.

The top level view of the architecture from the implementation perspective is shown in Figure 4.
The TENA Enterprise is a class that represents the collection of facilities that are participating in a

Volume IV Technical Reference Architecture 8

common set of activities related to the intended uses of the facilities as a cooperative set of
interacting assets.

TENA Enterprise

TENA Facility

Asset

Fixed Asset Instantiable Assetexcutes on

TENA Core Applications

Figure 4. Implementation Perspective View

The facility class corresponds roughly to our current notion of a range, laboratory, or other T&E or
training facility. In the domain view this corresponds to the subclasses of the Logical Range Resources
class and Mission Space class. This class is an aggregation of assets that comprise the facility. Assets
include all material, geographic space, equipment, personnel, etc. which facilities use in their day-to-day
operations. It may include equipment they own and organic personnel as well as equipment or
personnel they contract for.

Assets come in one of two types. There are fixed assets have a persistence and a physical existence.
Instantiable assets are those which are transient. Instantiable assets include software components that
execute on various fixed assets or communications assets which are allocated from some pool of
resources for a temporary period such as communications circuits provided by common carriers.

The domain model which is documented in the following Object Model section is not orthogonal to the
implementation model. Since the domain model describes the assets which are used by facilities there
are sections of the domain model which are coincident with the implementation model. Figure 5 shows
a portion of the domain model that elaborates the structure of the Logical Range Resources class. The
subclasses of this class, which include the Open Air T&E/Training Range class, aggregate various

Volume IV Technical Reference Architecture 9

resources. These resources, from the domain perspective, are assets from the implementation
perspective.

Logical Range
RESOURCES

OPEN AIR T&E /
Training RANGE

Sensor
Logistics

Communication Computer

Fixed Asset

Im
pl

em
en

ta
tio

n

P
er

sp
ec

tiv
eD

o
m

a
in

P
e
rsp

e
ctive

Secondary
Resources

Figure 5. Domain Model

The TENA Core, described in some detail below, constitutes the infrastructure for the TENA
Enterprise.

Various standards will be specified at different levels within the hierarchy of the architecture during the
process of developing TENA and the systems that it supports. Many of these standards will be
specified at the level of the system architecture and where system architectures are defined to support
specific types of facilities. Other standards will be specified at the implementation level. These
standards are specified in response to the need to support certain required technologies, platform
provided capabilities, information processing conventions, and information exchange resources. Since
these technologies and resources evolve over time and are replaced as they become obsolete, the
standards which are incorporated into TENA will evolve in response to the changing needs of facilities.
A conscious effort has been made in defining the architecture to isolate places where applicable
standards are subject to evolving at a relatively rapid pace and encapsulate those locations with well-
defined and stable interfaces. This results in an architecture where standards that have wide
applicability across the architecture (at the level of the TRA) are restricted to those known to be stable
over time. In general, these broad standards are the direct result of TENA design decisions and are
promulgated by the various design teams.

Volume IV Technical Reference Architecture 10

Volatile standards are more likely to be required for support of technologies and components
encapsulated at lower levels of the architecture. For example, communications standards which specify
the data representations, signaling protocols, circuit management protocols, etc., apply to system
architectures by defining aspects of the implementation of certain infrastructure components that
directly interface to the communications resources provided by the facility. This strategy defers most
of the standards specification to the design of system architectures, component design, and component
implementation. Readers will not see many standards referenced at this point because of this strategic
approach. As development proceeds, additional standards will be incorporated.

I.

2.4 Principles of the Architecture

2.4.1 Constrained Composition

One of the goals for the system resonates with a theme that is universal to the infrastructure. This is
the idea of a highly flexible ability to compose the system or segments of the system for specific
intended purposes that may be either transitory or permanent in nature. The notion of configuration of
a logical range, which is a collection of facility assets assembled to perform specific functions dictated
by user requirements, is basic to this theme. Assets which provide capabilities required to generate the
products which facility users need are selected from the set of facility assets available. Schedules are
negotiated to obtain access to the assets to match user time windows and the logical range is
instantiated to realize the planned exercise (execute the test plan defined). A number of constraints
apply to the use of assets including: physical proximity and location, coverage regions, performance
capabilities, and subsystem compatibility. These constraints restrain system users to meaningful
compositions capable of producing useful results.

2.4.2 Dynamic, Run-time Characterization

The logical range is intended to respond to many allowable compositions and permit the fairly rapid
reconfiguration of itself during operation. Because of this fact and the wide variety of asset types
available, the multitude of possible coordination paths, and the numerous and changing data
representations managed it is very difficult to imagine a system architecture responding to these
conditions without the ability to self describe assets and data.

Components of the infrastructure will be required to deal with assets on the basis of descriptions of
their capabilities and characteristics provided by them. The architecture will also establish methods to
allow the self description of data representations which can be provided either prior to or concurrent
with data transfer. Under many conditions components will negotiate representation issues before
operation commences thereby avoiding execution penalties during test operations. As required,
standards are established for parameters of services.

This theme should be followed through applications such as allowing for dynamic development of
displays where required or desired. Much of this is specified by the architecture within specific product
development frameworks.

Volume IV Technical Reference Architecture 11

2.4.3 Subscription Service

Use is made of an object based approach for subscription services for data access. Producers of data
announce to the infrastructure their intent to publish certain data and they describe the characteristics of
that data. Users of data make known their need by announcing subscriptions to specific data. The
infrastructure instances negotiate among themselves to enable delivery of the required data in a timely
manner. The parties to the data transfer can prescribe quality of service parameters which will be used
by the infrastructure to configure and assign communications resources. Parties may request changes
to quality of service during operation to accommodate changing needs. Actual data transfer is
accomplished according to protocols established for use of quality of service levels.

A primary intent for introducing this manner of establishing interfaces is the need to make efficient use
of resources. This is true in a temporal sense by allowing for a efficient matching of latency
requirements to the characteristics of available transfer mechanisms. It is also true in the sense of
managing capacity restrictions. Data should be communicated only if it is required, at the rate it is
required, for the period it is required, and, in most cases, only when it has changed. However,
provision is also made for certain continuous data streams which do not fit this model. The
architecture supports this though a separation of control operations from data transfer operations.
Filtering of data on the basis of interest sets, regions of interest, and rate of consumption, on a user
specified basis, supports managing resource utilization. A wide variety of implementation options can
be provided for.

2.4.4 Controlled Information Access

Most information within the enterprise is shared via use of Distribution Services. Any data passed
between applications travels by this route regardless of the identity or location of the application. For a
number of reasons, including security and the need to protect information that is internal to a specific
facility, the architecture provides controlled access to information that is published. Levels of access
allow users to limit information access to a desired subset of all users. Information that is published
with a global access tag is available to any user at any location. Infrastructure services will enforce an
access control policy based on instructions provided by information publishers.

The current assumption is that, initially, systems will operate in a system high configuration with
respect to information security. However, the potential impact on the system and its architecture to
support a true multi-level secure (MLS) system is significant enough that the need to support this more
involved security configuration will be considered in the architecture. It is unlikely that we would
attempt to build components expressly intended for supporting MLS or providing trusted components
in the infrastructure until necessary but we see a need to make sure they are planned into the
architecture so they can be smoothly integrated when required. Many of the impacts can be relegated
to implementation time decisions if the architecture provides hooks and has anticipated their influence.

2.4.5 Negotiated Quality of Service

It is apparent that some services that the infrastructure makes available have significant performance
and cost implications. In particular, communications include data streams with especially large capacity
requirements or strict latency tolerance. In addition, reliability is a factor in many cases. The

Volume IV Technical Reference Architecture 12

architecture recognizes the need to match specific physical assets to special performance figures of
merit and includes protocols for negotiation about these assets. Users of services, where appropriate,
can request that specialized assets be allocated when needed for operational reasons.

These protocols rely on the principal of separation of control information from data. This permits the
infrastructure to establish well-known and characterized control paths to establish data paths. Standard
interfaces are provided for applications with the infrastructure managing connections between those
interfaces and the underlying physical components. Applications are usually ignorant of the specific
details of transfer of the data. This, however, does not mean that there will not be specific and unique
processing required by applications when using special dedicated circuits. This is a way of negotiating
with the infrastructure about how much functionality will be provided by infrastructure components. If
the infrastructure is not tasked to provide required functionality the application will have to provide it.

Infrastructure services make applications simpler, more maintainable, and more portable when they
provide uniform functionality to applications. However, the architecture recognizes and supports the
need for matching capabilities to performance constraints.

2.5 High Level System Architecture View

2.5.1 The TENA Enterprise

The TENA Enterprise is the collection of TENA compliant systems that are joined together via
appropriate communications facilities as an integrated, interoperating system of systems. As facilities
bring their TENA-compliant systems on line they determine whether the systems are to join as part of
the TENA Enterprise or to operate in an isolated, stand-alone mode. The architecture specifies a
protocol used by these systems to announce their intent to join the enterprise system. Other systems
which are joining or have joined the enterprise system respond to an announcement of intent to join (or
resign, as appropriate), establishing a distributed and fully replicated enterprise state.

Volume IV Technical Reference Architecture 13

Facility 1

TENA
Compliant

System

TENA
Compliant

System

TENA
Compliant

System

Network
Gateway

Facility 2

TENA
Compliant

System

TENA
Compliant

System

Network
Gateway

Facility 3

TENA
Compliant

System

TENA
Compliant

System

Network
Gateway

Facility 4

TENA
Compliant

System

TENA
Compliant

System

Network
Gateway

Network
Gateway

TENA
Compliant

System

TENA
Compliant

System

TENA
Compliant

System

Facility 5

The TENA Enterprise

Figure 6. The TENA Enterprise

All facilities and all systems within the enterprise are able to recognize and interact in a meaningful
manner with all other systems that have joined the enterprise. The network connections required to
join the enterprise are predefined and well known to all TENA compliant systems. Individual systems
can join or resign as required and no single system or set of systems are responsible for control of or
maintaining the state of the system as a whole. Maintenance of the state of the enterprise is fully
decentralized and distributed.

Compliant systems will join the enterprise when they wish to make themselves and their assets available
for use by the enterprise as a whole or if they wish to make use of assets which are located at other
facilities. While Figure 6 indicates the existence of a single TENA enterprise, there is no inherent
limitation on the number of separate and concurrently operating enterprises. If conditions dictate that
multiple enterprises be constituted for different purposes the protocol for establishing the enterprise
supports this. Facility managers will have to provide information on which communications facilities to
use.

There are two effective levels of compliance for assets or resources owned by facilities and the facilities
themselves. Assets that are based on computational equipment and that can interoperate with other
such systems are rated on their individual compliance. Facilities are rated on their compliance based on
the aggregate compliance of systems described above and by whether they make available other assets
(not based on computational systems) available for enterprise wide use. For example, a facility may
consist of, among other assets, terrain over which test or training exercises may be conducted. That
terrain asset can be made available to the enterprise by its being described within the master asset
catalog and providing for the ability of users to schedule or reserve its use for an exercise. Thus if the
assets of a facility are made accessible to the enterprise the facility itself is TENA-compliant at some
level. There are different levels of compliance described in Volume VIII Transition Plan, and provision

Volume IV Technical Reference Architecture 14

is made for many different ways to expose assets for enterprise use based on the desires of the facility
owners or managers.

2.5.2 The Facility

Facilities are collections of assets that are located in relatively close proximity and under the control of
a single command structure. They correspond to the individual facilities, and laboratories that operate
today. The facility contains a number of assets some of that are based on computational platforms and
some which are not. Assets based on computational resources that are capable of individual
compliance have a structure similar to that shown in Figure 7.

Application ApplicationApplication

TENA CORE

Operating System
and

Platform Resources

A TENA Compliant System

Figure 7. A TENA Compliant System

The TENA Core is the building block of the system infrastructure. Each system has an instance of the
TENA Core that encapsulates the underlying platform. It provides isolation for the details of what
resources are available and their specific operating characteristics, as well as platform peculiar
representations, protocols, etc. It also provides those basic services and core applications which enable
the system to operate as a part of the enterprise. It is responsible for managing information about
which assets are available and their characteristics, as well as providing for the instantiation and control
of the logical range. The logical range is a temporary association of a set of assets for the purposes of
conducting a specific test/exercise. The TENA Core also provides additional services that provide for
exchange of information, configuration of test/exercise assets, set up and operation of communications
resources, and other services required to manage the enterprise and its facilities. The TENA Core is
described in detail below.

The TENA Core maintains information about assets that are available to the enterprise. This
information is stored in a database called the Master Asset Catalog and is available to any application
by using services exported by the TENA Core. This information is used in managing the enterprise and
in defining test/exercise plans. The Core also maintains a database of information classes that form the

Volume IV Technical Reference Architecture 15

basis for sharing information within the enterprise. This is maintained in the Information Class Catalog
that is available to any application through services exported by the TENA Core.

Each facility consists of one or more assets. In general, there will be at least one asset that is based on
a computational platform and is capable of joining the TENA Enterprise and responding to information
distributed within the enterprise. At least one of the assets in a facility is designated a caretaker. This
means that the asset is responsible for representing the assets for which it is responsible to the
enterprise and performing some of the management associated with the assets such as scheduling their
use. The number of caretakers and the allocation of assets to caretakers is determined by facility
managers in response to their local requirements.

Volume IV Technical Reference Architecture 16

3.0 TENA Object Model

C:\tmp\3.doc
This section defines the Baseline TENA Object Model. It is a conceptual view of the architecture
components (classes), their operations, attributes (data items) and relationships. It is assumed the
reader has some familiarity with object-oriented analysis techniques [Blaha, 1991].

The structure and components of this object model were selected to respond to primary TENA needs
(listed below) and solutions (sharing, interoperability, and reuse):

3.1.1 Reducing software development and maintenance cost. (Reuse)

The object-oriented approach (together with the Product Line Approach - Volume II) allows us to
reduce software development and maintenance cost. All of the externally visible information about a
major component is collected in a package which includes the operations (methods), data (attributes),
and relationship to other components. This promotes software reuse by having clearly specified
interfaces while still allowing for implementation flexibility. The architecture does not force, but
strongly supports object-oriented implementations. Object-oriented implementations promote software
maintenance because they isolate the impacts of a single software change. The impacts are clearly
specified in the object definition.

3.1.2 Utilizing common instrumentation at multiple facilities. (Reuse, Interoperability, and Sharing)

Details of hardware interfaces are hidden and encapsulated to isolate the impact of changes. Software
interfaces are standard objects which can be reused. The impact of changes to instrumentation, both
hardware and software is controlled and predictable using a combination of object-oriented techniques
and specification of standards at the appropriate architectural level.

3.1.3 Responding to the increased demand for multiple-site exercises and/or exercises which cross
T&E/Training or live/virtual/constructive boundaries. (Interoperability and Sharing)

The scope of the architecture is from customer entry to customer exit. This scope was chosen because
it is the highest level abstraction that is common to all participating test and training ranges and
resources.

Decisions about which environments and platforms to use in conducting an exercise are made early in
the life-cycle of the exercise. In order to “seamlessly interoperate” across multiple sites/facilities and/or
across live/virtual/constructive boundaries, the architecture must have visibility into where those
decisions are made. These decisions take place early in the planning of an exercise. A common
understanding of the process (the Logical Range Business Process Model - Volume V) and the
components (this object model) which support an exercise is required for routine construction of
mission spaces across physical and temporal boundaries. A common view of the mission space is
required to execute these exercises.

Volume IV Technical Reference Architecture 17

3.1.4 Responding to the increased demand for consistency of information between facilities and across
phases of the acquisition process. (Sharing)

The object model defines data elements for consistency of information. There are two approaches to
information consistency, both supported by the object structure. The first approach is to agree on a
community-wide definition. The second approach is to agree to a mechanism of providing the
definition. Objects and their data element representations can be self-defining, i.e. support tools can
determine the number, name, and representation of data elements by agreeing on a common object
description language. For example, an information presentation tool could query the “ship” object to
determine how many parameters are available for display, the frequency of their update, and format of
the data. It could also determine the valid operations which could be performed on this particular ship.
The tool could adapt to multiple ship objects without needing to be reprogrammed for each new type
of ship. The same ship object could be used across multiple phases of the acquisition process to
promote consistency of information, even if the not all data or operations are used by every phase.
TENA plans to recommend an object description language in FY98.

3.1.5 Capturing critical data to support informed customer and management decisions about resource needs,
capabilities, and investments. (Sharing)

Collecting critical information for planning investments and tracking resource utilization is time-
consuming, expensive, and sporadic. When data is collected it is difficult to compare from one facility
to another. Architectural support for collection of this data requires visibility into the customer
requirements, documentation of which requirements are being met or not met, and utilization
information for a wide variety of assets. The object model provides structures (object classes) where
this data can be saved, collected, and analyzed together with all supporting documentation. Policies for
how much of this data is collected and how it is used are under control of individual facility operators.

Volume IV Technical Reference Architecture 18

The TENA Object Model will not look like a typical OAR, HITL, or ISTF. Classical architectures in
our community can be described as in CTTRA:

COMMON TEST AND TRAINING RANGE ARCHITECTURE (CTTRA)

Live
Virtual

Constructive

SUT/TP

Instrumentation
Manual Obs.

Pre-Event
Real-Time
Post-Event
Archiving

Aural
Visual

Graphical

Mission Planning
& Control

Safety Control
Asset Control

Scheduling
Simulation/

Stimulation Control

Environment Acquisition Processing
Information
Presentation

Operational
Control

Information Transfer

Intra-range
Iter-range

External (e.g. FAA, NASA)

Figure 8. CTTRA Functional Architecture

This is indicative of an abstraction of how our systems work, i.e. the solution-space of our problem
domain. In fact, it is indicative of only a small piece of our solution-space, the piece focused on real-
time data collection, processing, display and subsequent post-test analysis.

TENA has focused on our problem-space, i.e. what our customers do with our systems. The scope of
the architecture is from customer entry to customer exit. This is no small change. It takes our
traditional engineering focus and makes it a supporting cast member in the fundamental problem we all
share: Defining, Scheduling, Planning, Executing, and Closing test and/or training exercises which
meet specific customer requirements and objectives. The object model provides structures which
support these functions.

These structures can be used to capture and reuse customer requirements, scenarios, plans, and
configurations, and to provide a context for comparison of results among different executions of an
exercise. An introduction to the primary structures which capture this information and the relationship
between them is offered below.

Mission Space [The term mission space is used in preference to battlespace to include operations other
than war and other non-battle missions.]

The mission space describes the environment, platforms, and events required to support an exercise.
Examples include open-ocean, desert terrain, submarine, and tank. Components of the mission space
can be provided by multiple potential sources.

Volume IV Technical Reference Architecture 19

3.1.6 Instance of the Mission Space

A specific environment, platform, or event (whether live, virtual, or constructive). We also refer to
this as a Primary Resource. An example is that the Pt. Mugu Sea Range may supply the Open Ocean
Environment required in the Mission Space.

3.1.7 Secondary Resources

A collection of resources which provide the information or actions required by the Primary Resources.
For example, the position of a ship may be a required information element from the mission space. The
Pt. Mugu Sea Range can provide positional information from many instrumentation sources.
Sometimes the specific source is critical to the exercise, at other times the facility is free to choose
which instruments are best suited to the task based on local considerations. These kinds of decisions
are “secondary” with respect to the primary goal of determining a participant’s position, although they
are certainly not “secondary” in importance from the point of view of range operations.

3.1.8 Logistic Resources

The equipment and personnel that support both Primary and Secondary Resources and other support
activities are Logistic Resources. All TENA-compliant facilities are assumed to have some basic
computational power, communications capabilities, financial requirements, and personnel to support
the exercise. The assignment of these resources to support a particular test is dependent on both the
primary and secondary resource choices. Multiple sets of logistic resources could handle the same
primary and secondary resource requirements. Logistic resources may be used to provide additional
support for an exercise being conducted largely at another facility.

Volume IV Technical Reference Architecture 20

3.2 The TENA Object Model Diagram

This section describes the TENA Object Model, in particular the structure of the object classes.
Portions of the model are reproduced in the text as they are described. The complete model diagrams
can be found in Appendix E. These descriptions will be elaborated and modified when necessary as the
TENA Object Model matures.

The TENA Object Model is one portion of the Technical Reference Architecture(TRA). The TRA is
used to develop domain-specific architectures for each community served by TENA (OAR, HITL,
ISTF, MF, etc.). TENA Applications Concepts (Volume VI) describes how this structure is used
together with the Logical Range Business Process Model (Volume V) to support the concept of the
Logical Range. Section 3.2 offers an expansion of the TRA level model for the domain of Open Air
Ranges. Within each domain, the model may be further customized for specific installations. Section
3.3 explains the Information Presenter class at a detailed level. A primary requirement of TENA is to
offer a flexible presentation/user interface which can dynamically build a wide-variety of displays and/or
user queries for any TENA-compliant system. This capability is fundamental to TENA. We provide
more detail in this area to support early review, discussion, and prototyping of this capability. Section
3.4 provides an example of how the Information Presenter class would be used to build typical OAR
displays/user interfaces.

In the diagrams that follow, the Logical Range Support Tool is highlighted to indicate that it is not an
object class, but a set of applications.

Volume IV Technical Reference Architecture 21

LOGICAL RANGE TEST/TRAINING

ESTABLISHES1

N

VIEWS

USES
DEFINES

1

N

MISSION SPACE

LOGICAL RANGE SCENARIO
CUSTOMER

SAVE
OPEN
EDIT
_
BROWSE
ASSIGN

TEST PLAN(S)
CUSTOMER DATA PACKAGE
COST ESTIMATE
WORK ORDER
TEST LOG

OPEN WORK
PLAN
EXECUTE
CLOSE WORK ORDER

CUSTOMER
REQUIREMENT
CUSTOMER DATA PACKAGE
COST ESTIMATE

ASSESS
PLAN
CONTROL
COMMIT
OBSERVE
STOP WORK
APPROVE

LOGICAL RANGE

LOGICAL RANGE
SUPPORT TOOL

OBSERVE
PLAN
SCHEDULE
BROWSE
OPEN
LINK
PAN
ZOOM
FOLLOW LINK
EDIT LINK
SAVE LINK

1

Figure 9. TENA OM-Level Zero

3.2.1 Customer

The customer class represents the person, command, or organization that reserves or sponsors
specific test and evaluation and/or training activities at the logical range.

A customer determines that the requirement exists to conduct a test or training event, what type(s) of
test is desired and/or what type/degree of training is desired and establishes criteria for the planning,
scheduling and evaluation of the desired event. The customer can assess, observe and control the
exercise or test. The customer receives a cost estimate for the exercise or test and commits the
exercise or test based on that estimate and the available budget.

The customer receives a customer data package at the end of the exercise or test reflecting the data
gathered and evaluated at the test points covered during the conduct of the exercise or test.

Volume IV Technical Reference Architecture 22

3.2.2 Logical Range Support Tool

The Logical Range Support Tool is an application set, defined as mandatory for the TENA
Architecture, which provides the mechanisms required to define, plan, schedule and execute a
Logical Range Test/Training Exercise.

The Logical Range Support Tool provides the ability to browse the Logical Range Resource Catalog,
which contains definitions of all assets which are visible to TENA.. These assets include Test Plans and
Logical Range Scenarios, as well as the resources required to conduct a Logical Range Test/Training
Exercise.

Logical Range Support Tool is highlighted in the object model diagram to indicate that it is not an
object class but rather a set of applications.

3.2.3 Logical Range Test/Training Exercise

The Logical Range Test/Training Exercise is a dynamic entity, composed of requirements,
plans, schedules, and resources required to test a system or system component, or to train
personnel as required.

The Logical Range Test/Training Exercise is driven by a set of test plans and schedules, and as a result
of the conduct of the Logical Range Test/Training Exercise, a customer data package is produced
reflecting the data gathered and evaluated at the test points covered during the conduct of the exercise
or test. This customer data package is delivered to the responsible customer for evaluation and review
as to the effectiveness of the Logical Range Test/Training Exercise.

3.2.4 Logical Range Scenario

A Logical Range Scenario is a specific implementation of a Test Plan to meet the Customers
requirements.

Many different Logical Range Scenarios are possible to meet the Logical Range Test/Training Exercise
requirements. Some or all features of the Logical Range Test/Training Exercise may be simulated, or
conducted with “stand-ins” when assets are not available or are too expensive to expend.

3.2.5 Mission Space

The Mission Space comprises those primary resources that are the focus of the Logical Range
Scenario.

These primary resources include the participant, or item under test, the environment, either real or
simulated, and the specific events that will define the Logical Range Test/Training Exercise.

Volume IV Technical Reference Architecture 23

3.2.6 Logical Range Resources

The Logical Range Resources comprise those Secondary and Logistics Resources that are
required to implement a specific Logical Range Scenario.

Example Secondary Resources for an Open Air Range include sensors, stimulators, analyzers.
Logistics Resources support the Secondary Resources and include computers, communications links,
personnel and financial support.

Volume IV Technical Reference Architecture 24

DOCTRINAL

POLITICALPERSON

WEAPON
TSPI Data
PARAMETRIC Data

PARTICIPANT SPECIFIC

PLATFORM
TSPI Data
PARAMETRIC Data

PARTICIPANT SPECIFIC

EVENT<S>
EVENT SCRIPT

EVENT EXECUTION

ENVIRONMENTPARTICIPANT
TSPI Data
PARAMETRIC Data

PARTICIPANT SPECIFIC

TACTICAL

MISSION SPACE

NATURAL

Figure 10. Mission Space Class

3.2.7 Participant

The Participant is the focus of a particular Logical Range Test/Training Exercise. Instances of
the participant class are those items that the range and/or facility is monitoring.

A participant is an abstraction of those properties of a platform or any other item/participant of direct
concern to the exercise.

It is not the intent of TENA to model every possible participant, but rather to establish a structure
which will be understood by any TENA compliant system. Details would be supplied by customers or
be available in DOD libraries.

3.2.8 Environment

The conditions under which the Participant is immersed during the execution of a Logical
Range Test/Training Exercise.

The implementation of the environment may eventually be assigned to real, simulated, constructive, or
mixed sources. Different aspects of the environment include natural, tactical, political, and doctrinal
components.

Volume IV Technical Reference Architecture 25

3.2.8.1 Natural

The Natural Environment Object Class refers to the physical environmental characteristics required to
support an exercise. These include: Terrain, Electromagnetic Environment, Ocean, Atmosphere, and
Space.

3.2.8.2 Tactical

The tactical environment is a characterization of an engagement situation between forces based on
historical and/or analytical experience in similar situations. Example: Amphibious assault on a heavily
guarded beach head with a large non-combatant population nearby.

3.2.8.3 Political

The political environment is a characterization of the relationship between actual or potential
participant groups in a scenario. Examples could be as simple as noting that two of the three
participating forces are at peace and committed to a mutual defense treaty, or that in an operation other
than war, that the primary goals of the hostile takeover of a military building are to embarrass the
President and the “protesters” have never been known to harm an occupied building or building
occupants.

3.2.8.4 Doctrinal

The doctrinal environment is a characterization of the “rules of engagement”. Forces operating under
different rules may produce different results even if all other environmental factors are constant.

3.2.9 Event

An event is an expression of scenario conditions in the environment and/or of the participants
which are of special interest to exercising the scenario. Some example events include: Aircraft
within 200 NM of surface ship, Tank ready to climb incline. Tank stopped on incline. Ambient air
temperature is 98 degrees. Signal strength on channel 21 is greater than or equal to 9 dB. Weapon
away. Events can be compounded conditions: Target acquired and no threats within 200 NM.

Volume IV Technical Reference Architecture 26

In the following diagram the facilities (Open Air Range, Simulation, Integration Laboratory, ISTF,
HTL, and MF) are outlined to indicate that they are currently only a notional representation in the
object model. Efforts to date on the TENA Object Model have concentrated on analyzing the Open
Air Range. Subject Matter Experts are confident that the completion of the required analysis of other
facilities will verify that, for the purposes of TENA, they have a similar object class structure. Once the
supposition that there is a similar class structure is verified, facility specific details will be encapsulated
by other object classes.

INTEGRATION LABORATORY MFHITLISTFOPEN AIR T&E / Training RANGE SIMULATION

Logical Range RESOURCES

Figure 11. Logical Range Resources Class

3.2.10 Logical Range Resources

The Logical Range Resources are a collection of individually schedulable assets from one or
more participating facilities, used to support the execution of a Logical Range Test/Training
Exercise .

Participating facilities may include T&E/Training open-air ranges and the logical range visible assets of
other peer T&E/Training domains including: Simulations, Integration Laboratories, Installed Systems
Test Facilities (ISTF), Hardware in the Loop (HITL) Facilities, Measurement Facilities, and Tactical
Units. This combination of assets meets identified customer needs and requirements for a specific
Logical Range Test/Training Exercise.

3.2.10.1 Open Air T&E/Training Range

The Open Air T&E/Training Range is a combination of the physical open-air range assets
available to participate in the Logical Range Test/Training Exercise.

Open Air Ranges consist of controlled or restricted areas to support the test of platforms/systems in a
real world, dynamic environment. They are instrumented with data collection, time-space-position
information, positive control of test participants, and real or simulated targets and threats as
appropriate. They, unlike the Logical Range, also have a permanent management structure and
individual identity that exists regardless of the existence or conduct of any Logical Range Test/Training
Exercise.

Volume IV Technical Reference Architecture 27

Field or Open-air Test Events refers to any test conducted in an open environment. It includes surface (land
and sea), undersea, airborne and spaceborne testing. Field tests are conducted where it is feasible, safe and
secure to test all or part of the SUT[participant] in an environment that is normally more realistic than any
attainable indoors. Field tests may allow the SUT[participant] to be operated more closely to its operational
conditions. However, particularly with EW systems, field tests may provide less insight into the performance
of a system because indoor facilities are the only place high density, high fidelity threat signals can be
generated in a secure environment.1

3.2.10.2 Simulation (Digital Models and Computer Simulations - DMS)

Simulation refers to those assets of models and simulations which are “visible” to the logical
range.

These models and simulations either provide a simulated test environment or representations of
systems, components, and platforms. DMS’s are used throughout the development, test, and training
process as analytical tools, as well as tools to drive or control electronic and other environmental
stimuli.

DMS’s can be utilized to create or modify the event environment in order to assist in the overall
development of a realistic environment into which participant is immersed. This may involve the
creation of physical geographic environments and environmental modifiers, the insertion of simulated
forces and force actions within a real or created environment, or a combination of the two.

DMS’s “can be used to design a better test program, add realism to test scenarios, extrapolate results
of testing, and explain aspects of system performance observed during testing. This can reduce time,
resources, and risk to an acquisition program. In some cases, M&S is the only way to conduct system
assessment and is the only way to generate “reproducible” scenarios and conditions.”2

Simulation/Stimulation Events are used extensively in the DoD test process. They can be applied to
computer or physical working models or the SUT [participants]. They may be real time or non-real time
models. Effective use of credible models and their simulation/stimulation events will provide cost effective
T&E.3

3.2.10.3 Integration Laboratories

These are the integration laboratory assets which are “visible” to the logical range.

An Integration Laboratory is a “facility that supports the integration of system components and/or
software in a laboratory environment for development, experiments, and testing. The integration
laboratory “simulates” (or replicates) a system to a known extent and allows the modification/addition
of component hardware/software for use without many of the restrictions or difficulties that would be
encountered using actual system hardware or host platforms.”4 Integration Laboratories are generally

1 The DoD Test and Evaluation Process, June 13, 1994, 2.2.2.2.6

2Simulation, Test, and Evaluation Process (STEP) Guidelines, December 2, 1996, Draft
3 The DoD Test and Evaluation Process, June 13, 1994, 2.2.2.2.7
4 Simulation, Test, and Evaluation Process (STEP) Guidelines, December 2, 1996, Draft

Volume IV Technical Reference Architecture 28

platform specific or unique. However, the simulated stimuli and data collection capabilities required by
Integration Laboratories are often common with those required by HITLs and ISTFs.

Integration Test Events test components, subsystems and systems combined with other elements. The other
elements may be other parts of the same system or other systems with which the SUT [participant] must
operate. These tests are frequently conducted in integration laboratories specifically designed to test the
SUT [participant] integrated with other systems or functions. Integration laboratories are generally weapon
system specific and are used from the beginning of a system's development through integration and fielding.
These tests employ a variety of models, simulations, and stimulation’s to generate scenarios and background
at or near real time.5

3.2.10.4 Installed Systems Test Facilities (ISTF)

These are the installed systems test facility assets which are “visible” to the logical range.

 “ISTF are facilities where entire systems or sub-systems get their first workout in the environment in which
they will operate (e.g., inside an aircraft). A full capability ISTF has the ability to mix a complete spectrum
of players from synthetic (digital models) to real (actual hardware) to hybrid (a combination of both); the
ability to provide multilevel threat simulations (open-loop and closed-loop signal simulators, including
actual or simulated threat system hardware); and the ability to provide simulations of all C3 elements a
system would be expected to operate in the real world. The Navy’s Air Combat Environment Test and
Evaluation Facility (ACETEF) at Patuxent River, MD is an example of an ISTF.”6

Installed Systems Events provide capabilities to evaluate SUTs [participant] that are installed on and
integrated with their host platforms. These tests can occur in indoor facilities such as electronic warfare
(EW) or climatic chambers or as outdoor DT and OT tests. Chambers provide a secure site to evaluate the
capabilities and limitations of the system against simulated and stimulated inputs. Climatic chambers
examine SUT[participant] capabilities in varied temperature and humidity conditions without having to
transport the SUT[participant] to those naturally occurring climates.7

3.2.10.5 Hardware in the Loop (HITL)

These are the Hardware in the Loop facility assets which are “visible” to the logical range.

These facilities provide capabilities to test systems or their components at various stages of
development (e.g. brassboard, breadboard, prototype, pre-production, production). HITLs provide
stimuli and data collection capabilities to permit test and evaluation of a system/component
independent of the host platform.

Hardware-in-the-loop (HITL) Events use elements of the SUT [participant] in combination with software to
examine the performance of those elements before the entire system is available or when a specific
capability cannot be tested. HITL events, such as breadboard, brassboard, or prototype tests permit
system/subsystem evaluation during various stages of development.8

5 The DoD Test and Evaluation Process, June 13, 1994, 2.2.2.2.3
6 Simulation, Test, and Evaluation Process (STEP) Guidelines, December 2, 1996, Draft
7 The DoD Test and Evaluation Process, June 13, 1994, 2.2.2.2.5
8 The DoD Test and Evaluation Process, June 13, 1994, 2.2.2.2.4

Volume IV Technical Reference Architecture 29

3.2.10.6 Measurement Facilities (MF)

These are the measurement facility assets which are “visible” to the logical range.

These facilities are used to provide a specialized test environment and/or data collection capability.
“Measurement facilities are used to quantify or measure parameters (such as thrust, radar cross section,
and drag) of a test article in precise terms. Examples of such facilities are wind tunnels, radar cross
section facilities, antennae pattern ranges, and engine thrust stands.”9 MF’s may be ground-based
laboratories or open air facilities (often located at or a part of OAR’s).

Component Measurement Test Events often involve the use of specialized capabilities to explore and
evaluate advanced technologies and are usually the first test events performed during the development
and/or buildup of the system. Examples include incoming parts inspection, thermal, acoustic and vibration
cycling, power requirement and heat generation tests.10

9 Simulation, Test, and Evaluation Process (STEP) Guidelines, December 2, 1996, Draft

10 The DoD Test and Evaluation Process, June 13, 1994, 2.2.2.2.2

Volume IV Technical Reference Architecture 30

Secondary Resources

SENSORS

LOGISTICS

STIMULATORS ANALYZERS

INTEGRATION LABORATORY MFHITLISTFOPEN AIR T&E / Training RANGE SIMULATION

Logical Range RESOURCES

PERSONNELCOMPUTERSCOMMUNICATIONSFINANCIAL

Figure 12. Logical Range Resource Class (Expanded)

3.2.11 Secondary Resources

Secondary Resources include facility or range specific assets that are required to support Primary
Resources in the execution phase.

In Figure 12 the highlighted object classes are specific to the Open Air Range domain. It is anticipated
that a similar class structure will apply to other facilities, but this has not been confirmed.

Secondary Resources are either specifically selected because of unique properties they posses, or they
are required or defined by the selection of Mission Space elements. Secondary Resources in turn
require or define Logistics resources. As an example, a Mission space requirement may include
underwater tracking at the Underwater Tracking Range (UTR) at AFWTF, this in turn defines the
hydrophone tracking array off of St. Croix, which in turn defines the Data Gathering and Processing
System (DGPS) as a likely computer resource. A Customer could decide however, not to use the
DGPS in favor of his own signal processing system which he could then connect to the Hydrophone
Support Electronics (HSE) directly, and thus bypass the computer resources at the UTR

Further explanation of the object classes of Sensors, Stimulators and Analyzers are specific to the Open
Air Range domain are given later in this document.

Volume IV Technical Reference Architecture 31

3.2.12 Logistics

The Logistics Class comprises those support asset classes required to actually execute a Logical
Range Test/Training Exercise.

The selection of Secondary Resources (e.g., sensors, stimulators and analyzers) used to support the
Logical Range Test/Training Exercise, imposes certain requirements and limitations on other necessary
assets. These include Financial, Communications, Computers, and Personnel resources.

The Logistics class is conceptually different from the current representation of Secondary Resources, in
that it is not domain specific, but rather specific to the whole of the TENA Technical Reference
Architecture.

LOGISTICS

PERSONNELCOMPUTERSCOMMUNICATIONSFINANCIAL

Figure 13. Logistics Class

The Logistics Class Structure, as shown in Figure 13, consists of the following sub-classes:

3.2.12.1 Financial

The Financial class represents those aspects of the planning and scheduling process that have
cost implications to the Customer.

Each decision point in the Logical Range Business Process brings with it some financial data which
may well direct the final choice of resources used to support the Logical Range Test/Training Exercise.

3.2.12.2 Communications Assets

Communications assets are used to move attribute information from one object to another, or
to request an operation in an object be invoked.

The attribute descriptions in the object model help determine appropriate communication mechanisms.
Attribute information should include characteristics like size, precision, update rate, and latency
restrictions. The list of which attributes will be “published”, and which are being “subscribed to”
determines communication need paths. There must be sufficient information to determine if the
communication needs of an exercise can be met. The communication class also needs operations to

Volume IV Technical Reference Architecture 32

set-up, monitor, and control the communication paths. These should include both static and dynamic
services.

Details internal to the communication transport mechanism may not be visible to the Logical Range,
especially for network communications via public carriers.

3.2.12.3 Computer Assets

Computer Assets represents the data processing capability which executes the operations on all
of the objects in the Logical Range.

Every operation in the Logical Range must be assigned to some Computer Asset. Each computing
assets has some inherent attributes like memory, processor power, secondary storage capacity, and
access to communication channels. Planning of a Logical Range exercise includes ensuring there is at
least one valid mapping of operations to computing assets which will meet all of the demands of the
planned exercise. The mapping of operations to computer assets need not be static.

Computer assets can be pre-configured or optimized for certain kinds of operations such as MIS,
Scientific Computation, and/or Data Acquisition operations. Computer assets may have subclasses like
secondary storage, processor, display, and communication link. ****

3.2.12.4 Personnel

The Personnel class represents a map of those operations that a particular
user/operator/observer is allowed to invoke for a Logical Range Test/Training Exercise.

Ranges tend to divide the responsibility for controlling / monitoring a test or exercise into predefined
operational groups, i.e. range safety, test conductor, etc. The list of operations allowed for a specific
kind of user can be saved and utilized for multiple tests, or a list can be customized for just one
exercise.

Exercises which span multiple ranges (and into non-OAR domains) can run into operational confusion
when, for example, the functions performed by a “Test Conductor” at Range A, differ from those at
Range B. The TENA Object model contains a flexible mapping capability so there will be no
ambiguity in what operations are allowed for different classes of user.

Volume IV Technical Reference Architecture 33

3.2 13 Secondary Resources

This section describes how the Secondary Resources Class (at the TRA level) is expanded for the
specific domain of the Open Air Range. The Open Air Range specific subclasses are describe below.

SENSORS STIMULATORS ANALYZERS

SECONDARY RESOURCES

Figure 14. Secondary Resource Class

3.2.13.1 Sensors

The sensor class describes items which are used for the collection information from the
environment or instrumented participants.

Sensors are most often used to determine the Time Space Position Information (TSPI) for a
participant, standard range (Test / Exercise) time, environmental (weather, electromagnetic, etc.)
characteristics and telemetry data from a participant. Sensor data can be correlated from multiple
sensor sources, filtered from raw input data, or compared for “best solution” reporting.

Volume IV Technical Reference Architecture 34

RF NBC

VIDEO

MANUAL OBSERVATION

TEST / EXERCISE STANDARD TIME

IRIG

LASER

OPTICALGPS

INFRAREDACOUSTIC

MAGNETICRADAR

ESM

MECHANICAL

ELECTRIC

VIBRATION

PRESSURE

SENSOR

SENSOR POSITION

SENSOR MODE

MULTISENSOR CORRELATION

SMOOTHING

FILTERING

KALMAN FILTERING

ENVIRONMENTALIFFINS

Figure 15. Sensor Class

3.2.13.1.1 Manual Observation

Manual Observations are those TSPI or data inputs made during or after real-time by human observers
of the T&E/Training Logical Range Test/Training Exercise.

3.2.13.1.2 Electronic Support Measures (ESM)

ESM are the systems, or components of systems designed to detect and/or identify the presence of
electronically radiated signals. ESM can be used for signature measurement of the Tactical Unit or
System-Under-Test as well as provide platform performance.

3.2.13.1.3 Radar

Radar represents a sensor that is used to determine the distance and direction of objects by transmission
and return of electromagnetic energy, which can be used for precision tracking and for safety control
within the range area, and to determine such information as the Radar cross-section of a participant.

3.2.13.1.4 Laser

Volume IV Technical Reference Architecture 35

Laser represents a sensor designed to detect laser radiation.

3.2.13.1.5 Magnetic

Magnetic represents a sensor designed to detect magnetic fields, or the distortion of such fields.

3.2.13.1.6 Acoustic

Acoustic represents a sensor that uses sound/sound propagation designed to reflect and return objects
of interest. This may include sonobuoys, sonar, and hydrophones.

3.2.13.1.7 Global Positioning System (GPS)

GPS is to used to provide highly accurate navigational position data by using a system of orbiting
satellites. Time synchronization is also available from GPS.

3.2.13.1.8 Infra-Red

Infra-Red represents a sensor that provides the imagery produced as the result of sensing
electromagnetic radiation emitted or reflected by the infra-red portion of the electromagnetic spectrum.
The Infra-Red sensors are concerned mainly with heat radiated by an object, such as the hot plume of
exhaust gas, aerodynamically generated heat, or even a person’s heat. This information could be useful
in object detection as well as evaluating the performance of certain platforms and in providing a
signature measurement of the amount of heat generated by a unit.

3.2.13.1.9 Optical

Optical represents a sensor that pertains to sight or vision. This could include theodolites, binoculars,
telescopes and television equipment. It may be more manual than electronic.

3.2.13.1.10 Video

Video is also a sensor that pertains to sight or vision, but it is distinct from the Optical Sensor in that it
is entirely electronic.

3.2.13.1.11 Radio Frequency (RF)

RF Sensors are similar to Radar, except that they are passive receivers. RF is also used to transmit
Inertial Navigation System (INS) data, as well as Identify Friend or Foe (IFF) mode information.

3.2.13.1.12 Test/Exercise Standard Time

Time synchronization is critical to the collection of real-time data. Most open air ranges receive time
data as if it were sensed.

Volume IV Technical Reference Architecture 36

3.2.13.1.13 Pressure

Pressure represents a sensor that can be used to measure the exertion of force upon a surface by an
object in contact with it. This sensor would be primarily used with telemetry systems.

3.2.13.1.14 Vibration

Vibration represents a sensor designed to detect or measure the vibrations of an object. This sensor
would be primarily used with telemetry systems.

3.2.13.1.15 Electric

Electric represents those sensors or devices designed to measure or detect the presence of electrical
fields/changes in an environment. This sensor would be primarily used with telemetry systems.

3.2.13.1.16 Nuclear Biological Chemical (NBC)

NBC sensors are designed to measure the levels and effects of NBC agents used during the conduct of
a T&E/Training Logical Range Test/Training Exercise.

3.2.13.1.17 Mechanical

Mechanical data sensors are designed to measure stress, torque or other forces not included in the
pressure or vibration classes

3.2.13.1.18 Environmental

Environmental Sensors measure the natural environment, such as wind direction and speed,
temperature, humidity, atmospheric pressure, etc.

Volume IV Technical Reference Architecture 37

3.2.14 Stimulators

The stimulator class describes items which are used for influencing the environment and/or
participants.

Stimulators influence the environment. The changes in the environment are then detected by range or
participant sensors.

Electronic Counter Measures (ECM) is used for testing of electronic combat systems are an example
of a class of stimulators. ECM stimulators are capable of providing a simulated hostile environment
including radar, jamming, and various counter and counter-counter measures. ECM stimulators are
also used for training.

Other stimulators correspond to the system or sensor that they are designed to stimulate.

<- E.G. CHAFF...

MAGNETIC

INFRARED

JAMMINGDECEPTIVE

PASSIVEACTIVE

ECM OPTICAL

COMM

ESM

ENVIRONMENT

ACOUSTIC

STIMULATOR

Figure 16. Stimulator Class

Volume IV Technical Reference Architecture 38

3.2.15 Analyzers

An analyzer uses information about a scenario to generate derived results / conclusions from
that information. It may use archival data to assist in the derivation and/or conclusions.

Volume IV Technical Reference Architecture 39

3.3 Information Presenter Introduction

The Information Presenter Class (IPC) hierarchy provides a flexible (i.e., scaleable and extendible)
framework for developing graphical user interfaces (GUIs). The IPC given borrows heavily from the
Java Abstract Windowing Toolkit (AWT). The problems faced by the designers of the AWT are
similar to those faced by TENA - namely, multiple independent platforms utilizing multiple independent
and/or incompatible operating systems. By modeling the structure of the Information Presenter class
after the AWT, TENA can leverage a reasonable COTS solution to a complex problem. However, the
current AWT will not meet all of TENA’s needs. Some modifications to the basic AWT structure are
needed to address TENA specific concerns. Furthermore, limiting TENA to the AWT (and as a result
Java) would be premature at this point in TENA’s evolution.

From the perspective of the IPC, information is distinguished by its interpretation (at least in the digital
sense). By distinguishing information in this manner, an IPC framework can be defined, as well as a set
common of “information presenter” methods. The specific details regarding how and what information
is interpreted becomes an implementation detail. A single presentation mechanism can be used to
present all information regardless of media (e.g., CRT-based display or hardcopy).

The IPC is, in effect, independent of what is being presented. However, for information to be
accurately presented some basic transactions must occur. Information interpretation must be
consistent. Mechanisms to negotiate and fix the set(s) of methods/services for representing the
information must be established. Namely,

n If the IPC has the appropriate information presentation capabilities, then these capabilities may be used,

n If the IPC doesn’t have the appropriate information presentation capabilities, then these capabilities
may be supplied, and

n If the IPC doesn’t have the appropriate information presentation capabilities, and these capabilities are
not supplied, the IPC cannot be used.

As an example of what would transpire during the negotiation and fixing of a method set, consider two
possible means of displaying a raw video stream. First, the stream can be displayed on a Canvas using
a paint method provided by the Canvas class. Second, the Canvas class may be subclassed and a new
paint stream method supplied. (Note: a third, less deterministic, means exists in the form of dynamic
method invocation, but that’s out of the realm of this example and the current IPC).

Regarding the flexibility of the IPC as presented, consider the use of the TextComponet Class and its
subclasses. Text is something that can be used in association with any displayable piece of the IPC
component hierarchy, which in turn may present visual, aural, tactile information (i.e., text can be
added to clarify visual, aural, tactile information without being a part of the actual information stream).

The complete IPC hierarchy is given in Figures 17-24. The following pages contain brief descriptions
of each class in the IPC hierarchy. Also included are candidate sets of attributes and methods for each

Volume IV Technical Reference Architecture 40

class. These sets are not complete, but do offer a reasonable starting point from which the IPC can be
further refined.

Classes given in the following description of the IPC do not specify any constructor methods. In a
purely object oriented implementation of the IPC constructor methods would be required. The
specification of the classes in a purely object oriented implementation would explicitly identify and
describe the constructor methods.

Volume IV Technical Reference Architecture 41

Information Presenter Class
Information Presenter

Add (all attributes)
Modify (all attributes)
Delete (all attributes)
Construct
Record
Display
Print

CheckboxGroup Color Component Cursor Dimension ...

.

.

.
See Figures 22-23

Figure 17. Information Presenter Class (1)

Information Presenter Class

Information Presenter

Add (all attributes)
Modify (all attributes)
Delete (all attributes)
Construct
Record
Display
Print

EventQueue Font FontMetrics Graphics GUIEvent
......

Figure 18. Information Presenter (2)

Volume IV Technical Reference Architecture 42

Information Presenter Class

Information Presenter

Add (all attributes)
Modify (all attributes)
Delete (all attributes)
Construct
Record
Display
Print

GUIEventMulticaster Image Insets LayoutManager MediaTracker
......

Figure 19. Information Presenter (3)

Information Presenter Class
Information Presenter

Add (all attributes)
Modify (all attributes)
Delete (all attributes)
Construct
Record
Display
Print

MenuComponent MenuShortcut Point Polygon PrintJob
.
.

(See Figure 24)

Figure 20. Information Presenter (4)

Volume IV Technical Reference Architecture 43

Information Presenter Class

Information Presenter

Add (all attributes)
Modify (all attributes)
Delete (all attributes)
Construct
Record
Display
Print

Rectangle Toolkit Video
...

Figure 21. Information Presenter Class (5)

C o m p o n e n t C lass

C o n ta inerC a n v a s L a b e l L ist
. . .

C o m p o n e n t

W i n d o w

F r a m e D ia log

P a n e l Sc ro l lPane

F ileD ia log

Figure 22. Component Class (1)

Volume IV Technical Reference Architecture 44

C o m p o n e n t Class

Checkbox Button Choice Scrollbar...

Component

TextComponent

TextArea TextField

Figure 23. Component Class(2)

M e n u C o m p o n e n t C l a s s

M e n u C o m p o n e n t

M e n u I t e m

M e n uC h e c k b o x M e n u I t e m

M e n u B a r

P o p u p M e n u

Figure 24. Menu Component Class

Volume IV Technical Reference Architecture 45

One note on nomenclature: There are several references to a Toolkit within the IPC. The IPC given
relies heavily on an underlying windowing system (e.g., Windows or X-win). This reliance provides
many advantages, chief of which is that fact that the IPC will not have to be built from scratch. The
Toolkit is essentially middleware that binds the IPC components to their appropriate counterparts in
the underlying windowing system. As such, the Toolkit is an implementation specific detail. However,
the description of the IPC would be incomplete without at least mentioning the Toolkit.

3.4 Information Presenter Description

3.4.1 Class Name: Information Presenter

Description: The base class of all classes related to information presentation. The class also identifies utilities
common to all information presentation subclasses.

Attributes:
Methods: Add (all attributes)

Modify (all attributes)
Delete (all attributes)
Construct
Display
Record
Print

3.4.2 Class Name: Checkbox Group

Description: The Checkbox Group class is used to group together a set of Checkbox components (see section
3.4.4.3).

Structure:
Specialization_Of: Information Presenter

Attributes:
Methods: getSelectedCheckbox()

Gets the current choice from this check box group.
setSelectedCheckbox(Checkbox)
Sets the currently selected check box in this group to be the specified check box.
toString()
Returns a string representation of this check box group, including the value of its current selection.

3.4.3 Class Name: Color

Description: This class encapsulates colors using the RGB format. In RGB format, the red, blue, and green
components of a color are each represented by an integer in the range 0-255. The value 0 indicates no contribution
from this primary color. The value 255 indicates the maximum intensity of this color component.
Implementers of this class may find it useful to provide methods to convert between RGB (red, green,
blue) and HSB (Hue Saturation Brightness) color formats.

Structure:
Specialization_Of: Information Presenter

Volume IV Technical Reference Architecture 46

Attributes: black
The color black.

blue
The color blue.

cyan

The color cyan.
darkGray

The color dark gray.
gray

The color gray.
green

The color green.
lightGray

The color light gray.
magenta

The color magneta.
orange

The color orange.
pink

The color pink.
red

The color red.
white

The color white.
yellow

The color yellow.

Methods: brighter()
Creates a brighter version of this color.

 darker()
Creates a darker version of this color.

decode(String)
Converts a string to an integer and returns the specified color.

equals(Object)

Determines whether another object is equal to this color.

getBlue()
Gets the blue component of this color.

getColor(String)
Finds a color in the system properties.

getColor(String, Color)
Finds a color in the system properties.

getColor(String, int)
Finds a color in the system properties.

getGreen()
Gets the green component of this color.

getHSBColor(float, float, float)
Creates a Color object based on values supplied for the HSB color model.

getRed()

Volume IV Technical Reference Architecture 47

Gets the red component of this color.
getRGB()

Gets the RGB value representing the color in the default RGB ColorModel.
HSBtoRGB(float, float, float)

Converts the components of a color, as specified by the HSB model, to an equivalent set
of values for the RGB model.

RGBtoHSB(int, int, int, float[])
Converts the components of a color, as specified by the RGB model, to an equivalent set
of values for hue, saturation, and brightness, the three components of the HSB model.

toString()
Creates a string that represents this color and indicates the values of its RGB
components.

3.4.4 Class Name: Component

Description: A component is an object having a graphical representation that can be displayed on the screen and
that can interact with the user. Also, since the graphical representation can be displayed on the screen, it can be stored
and printed as needed.

Structure:
Specialization_Of: Information Presenter

Attributes:

Methods: add(PopupMenu)
Adds the specified popup menu to the component.

checkImage(Image, ImageObserver)
Returns the status of the construction of a screen representation of the specified image.

checkImage(Image, int, int, ImageObserver)
Returns the status of the construction of a screen representation of the specified image.

contains(int, int)
Checks whether this component "contains" the specified point, where x and y are
defined to be relative to the coordinate system of this component.

contains(Point)
Checks whether this component "contains" the specified point, where the point's x and y
coordinates are defined to be relative to the coordinate system of this component.

createImage(ImageProducer)
Creates an image from the specified image producer.

createImage(int, int)
Creates an off-screen drawable image to be used for double buffering.

doLayout()
Prompts the layout manager to lay out this component.

getAlignmentX()
Returns the alignment along the x axis.

getAlignmentY()
Returns the alignment along the y axis.

getBackground()
Gets the background color of this component.

getBounds()
Gets the bounds of this component in the form of a Rectangle object.

getColorModel()
Gets the instance of ColorModel used to display the component on the output device.

getComponentAt(int, int)

Volume IV Technical Reference Architecture 48

Determines if this component or one of its immediate subcomponents contains the (x, y)
location, and if so, returns the containing component.

getComponentAt(Point)
Returns the component or subcomponent that contains the specified point.

getCursor()
Gets the cursor set on this component.

getFont()
Gets the font of this component.

getForeground()
Gets the foreground color of this component.

getGraphics()
Creates a graphics context for this component.

getLocale()
Gets the locale of this component.

getLocation()
Gets the location of this component in the form of a point specifying the component's
top-left corner.

getLocationOnScreen()
Gets the location of this component in the form of a point specifying the component's
top-left corner in the screen's coordinate space.

getMaximumSize()
Gets the maximum size of this component.

getMinimumSize()
Gets the mininimum size of this component.

getName()
Gets the name of the component.

getParent()
Gets the parent of this component.

getPreferredSize()
Gets the preferred size of this component.

getSize()
Returns the size of this component in the form of a Dimension object.

getToolkit()
Gets the toolkit of this component.

getTreeLock()
Gets this component's locking object (the object that owns the thread sychronization
monitor) for AWT component-tree and layout operations.

imageUpdate(Image, int, int, int, int, int)
Repaints the component when the image has changed.

invalidate()
Invalidates this component.

isEnabled()
Determines whether this component is enabled.

isFocusTraversable()
Returns the value of a flag that indicates whether this component can be traversed using
Tab or Shift-Tab keyboard focus traversal.

isShowing()
Determines whether this component is showing on screen.

isValid()
Determines whether this component is valid.

isVisible()
Determines whether this component is visible.

list()
Prints a listing of this component to the standard system output stream System.out.

Volume IV Technical Reference Architecture 49

list(PrintStream)
Prints a listing of this component to the specified output stream.

list(PrintStream, int)
Prints out a list, starting at the specified indention, to the specified print stream.

list(PrintWriter)
Prints a listing to the specified print writer.

list(PrintWriter, int)
Prints out a list, starting at the specified indention, to the specified print writer.

paint(Graphics)
Paints this component.

paintAll(Graphics)
Paints this component and all of its subcomponents.

paramString()
Returns the parameter string representing the state of this component.

prepareImage(Image, ImageObserver)
Prepares an image for rendering on this component.

prepareImage(Image, int, int, ImageObserver)
Prepares an image for rendering on this component at the specified width and height.

print(Graphics)
Prints this component.

printAll(Graphics)
Prints this component and all of its subcomponents.

processComponentEvent(ComponentEvent)
Processes component events occurring on this component by dispatching them to any
appropriate objects.

processEvent(AWTEvent)
Processes events occurring on this component.

processFocusEvent(FocusEvent)
Processes focus events occurring on this component by dispatching them to any
appropriate objects.

processKeyEvent(KeyEvent)
Processes key events occurring on this component by dispatching them to any registered
objects.

processMouseEvent(MouseEvent)
Processes mouse events occurring on this component by dispatching them to any
appropriate objects.

processMouseMotionEvent(MouseEvent)
Processes mouse motion events occurring on this component by dispatching them to any
appropriate objects.

remove(MenuComponent)
Removes the specified popup menu from the component.

removeNotify()
Notifies this component that it has been removed from its container and if a peers exists,
it destroys it.

repaint()
Repaints this component.

repaint(int, int, int, int)
Repaints the specified rectangle of this component.

repaint(long)
Repaints the component.

repaint(long, int, int, int, int)
Repaints the specified rectangle of this component within tm milliseconds.

requestFocus()
Requests that this component get the input focus.

Volume IV Technical Reference Architecture 50

setBackground(Color)
Sets the background color of this component.

setBounds(int, int, int, int)
Moves and resizes this component.

setBounds(Rectangle)
Moves and resizes this component to conform to the new bounding rectangle r.

setCursor(Cursor)
Set the cursor image to a predefined cursor.

setEnabled(boolean)
Enables or disables this component, depending on the value of the parameter b.

setFont(Font)
Sets the font of this component.

setForeground(Color)
Sets the foreground color of this component.

setLocale(Locale)
Sets the locale of this component.

setLocation(int, int)
Moves this component to a new location.

setLocation(Point)
Moves this component to a new location.

setName(String)
Sets the name of the component to the specified string.

setSize(Dimension)
Resizes this component so that it has width d.width and height d.height.

setSize(int, int)
Resizes this component so that it has width width and height.

setVisible(boolean)
Shows or hides this component depending on the value of parameter b.

toString()
Returns a string representation of this component and its values.

transferFocus()
Transfers the focus to the next component.

update(Graphics)
Updates this component.

validate()
Ensures that this component has a valid layout.

3.4.4.1 Class Name: Button

Description: This class creates a labeled button. An application can cause some action to happen when the button is
pushed.

Structure:
Specialization_Of: Component

Attributes:

Methods: addNotify()
Creates the peer of the button.

getActionCommand()
Returns the command name of the action event fired by this button.

getLabel()
Gets the label of this button.

Volume IV Technical Reference Architecture 51

paramString()
Returns the parameter string representing the state of this button.

processActionEvent(ActionEvent)
Processes action events occurring on this button by dispatching them to any appropriate
objects.

processEvent(AWTEvent)
Processes events on this button.

setActionCommand(String)
Sets the command name for the action event fired by this button.

setLabel(String)
Sets the button's label to be the specified string.

3.4.4.2 Class Name: Canvas

Description: A Canvas component represents a blank rectangular area of the screen onto which an application can
draw or from which an application can trap input events from the user. An application must subclass the Canvas class in
order to get useful functionality such as creating a custom component. The paint method must be overridden in order to
perform custom graphics on the canvas.

Structure:
Specialization_Of: Component

Attributes:

Methods: addNotify()
Creates the peer of the canvas.

paint(Graphics)
This method is called to repaint this canvas.

3.4.4.3 Class Name: Checkbox

Description: A check box is a graphical component that can be in either an "on" (true) or "off" (false) state. Clicking
on a check box changes its state from "on" to "off," or from "off" to "on.

Structure:
Specialization_Of: Component

Attributes:

Methods: addNotify()
Creates the peer of the Checkbox.

getCheckboxGroup()
Determines this check box's group.

getLabel()
Gets the label of this check box.

getSelectedObjects()
Returns an array (length 1) containing the checkbox label or null if the checkbox is not
selected.

getState()
Determines whether this check box is in the "on" or "off" state.

paramString()
Returns the parameter string representing the state of this check box.

processEvent(AWTEvent)

Volume IV Technical Reference Architecture 52

Processes events on this check box.
processItemEvent(ItemEvent)

Processes item events occurring on this check box by dispatching them to any
appropriate objects.

setCheckboxGroup(CheckboxGroup)
Sets this check box's group to be the specified check box group.

setLabel(String)
Sets this check box's label to be the string argument.

setState(boolean)
Sets the state of this check box to the specified state.

3.4.4.4 Class Name: Choice

Description: The Choice class presents a pop-up menu of choices. The current choice is displayed as the title of the
menu.

Structure:
Specialization_Of: Component

Attributes:

Methods: add(String)
Adds an item to this Choice menu.

addItem(String)
Adds an item to this Choice.

addNotify()
Creates the Choice's peer.

getItem(int)
Gets the string at the specified index in this Choice menu.

getItemCount()
Returns the number of items in this Choice menu.

getSelectedIndex()
Returns the index of the currently selected item.

getSelectedItem()
Gets a representation of the current choice as a string.

getSelectedObjects()
Returns an array (length 1) containing the currently selected item.

insert(String, int)
Inserts the item into this choice at the specified position.

paramString()
Returns the parameter string representing the state of this choice menu.

processEvent(AWTEvent)
Processes events on this choice.

processItemEvent(ItemEvent)
Processes item events occurring on this Choice menu by dispatching them to any
appropriate objects.

remove(int)
Removes an item from the choice menu at the specified position.

remove(String)
Remove the first occurrence of item from the Choice menu.

removeAll()
Removes all items from the choice menu.

select(int)

Volume IV Technical Reference Architecture 53

Sets the selected item in this Choice menu to be the item at the specified position.
select(String)

Sets the selected item in this Choice menu to be the item whose name is equal to the
specified string.

3.4.4.5 Class Name: Container

Description: A container object is a component that can contain other components.

Structure:
Specialization_Of: Component

Attributes:

Methods: add(Component)
Adds the specified component to the end of this container.

add(Component, int)
Adds the specified component to this container at the given position.

add(Component, Object)
Adds the specified component to the end of this container.

add(Component, Object, int)
Adds the specified component to this container with the specified constraints at the
specified index.

add(String, Component)
Adds the specified component to this container.

addImpl(Component, Object, int)
Adds the specified component to this container at the specified index.

addNotify()
Notifies the container to create a peer.

doLayout()
Causes this container to lay out its components.

getAlignmentX()
Returns the alignment along the x axis.

getAlignmentY()
Returns the alignment along the y axis.

getComponent(int)
Gets the nth component in this container.

getComponentAt(int, int)
Locates the component that contains the x,y position.

getComponentAt(Point)
Gets the component that contains the specified point.

getComponentCount()
Gets the number of components in this panel.

getComponents()
Gets all the components in this container.

getInsets()
Determines the insets of this container, which indicate the size of the
container's border.

getLayout()
Gets the layout manager for this container.

getMaximumSize()
Returns the maximum size of this container.

getMinimumSize()

Volume IV Technical Reference Architecture 54

Returns the minimum size of this container.
getPreferredSize()

Returns the preferred size of this container.
invalidate()

Invalidates the container.
isAncestorOf(Component)

Checks if the component is contained in the component hierarchy of this
container.
list(PrintStream, int)

Prints a listing of this container to the specified output stream.
list(PrintWriter, int)

Prints out a list, starting at the specified indention, to the specified print writer.
paint(Graphics)

Paints the container.
paintComponents(Graphics)

Paints each of the components in this container.
paramString()

Returns the parameter string representing the state of this container.
print(Graphics)

Prints the container.
printComponents(Graphics)

Prints each of the components in this container.
processContainerEvent(ContainerEvent)

Processes container events occurring on this container by dispatching them to any
appropriate objects.

processEvent(AWTEvent)
Processes events on this container.

remove(Component)
Removes the specified component from this container.

remove(int)
Removes the component, specified by index, from this container.

removeAll()
Removes all the components from this container.

removeNotify()
Notifies this container and all of its subcomponents to remove their peers.

setLayout(LayoutManager)
Sets the layout manager for this container.

validate()
Validates this container and all of its subcomponents.

validateTree()
Recursively descends the container tree and recomputes the layout for any subtrees
marked as needing it (those marked as invalid).

3.4.4.5.1 Class Name: Panel

Description: Panel is the simplest container class. A panel provides space in which an application can attach any
other component, including other panels.

Structure:
Specialization_Of: Container

Attributes:

Volume IV Technical Reference Architecture 55

Methods: addNotify()
Creates the Panel's peer.

3.4.4.5.2 Class Name: Scrollpane

Description: A container class which implements automatic horizontal and/or vertical scrolling for a single child
component. The display policy for the scrollbars can be set to:

1. 1. as needed: scrollbars created and shown only when needed by scrollpane;

2. 2. always: scrollbars created and always shown by the scrollpane;

3. 3. never: scrollbars never created or shown by the scrollpane.

Structure:
Specialization_Of: Container

Attributes: SCROLLBARS_ALWAYS
Specifies that horizontal/vertical scrollbars should always be shown regardless of the
respective sizes of the scrollpane and child.

SCROLLBARS_AS_NEEDED
Specifies that horizontal/vertical scrollbar should be shown only when the size of the
child exceeds the size of the scrollpane in the horizontal/vertical dimension.

SCROLLBARS_NEVER
Specifies that horizontal/vertical scrollbars should never be shown regardless of the
respective sizes of the scrollpane and child.

Methods: addImpl(Component, Object, int)
Adds the specified component to this scroll pane container.

addNotify()
Creates the scroll pane's peer.

doLayout()
Lays out this container by resizing its child to its preferred size.

getHAdjustable()
Returns the Adjustable object which represents the state of the horizontal scrollbar.

getHScrollbarHeight()
Returns the height that would be occupied by a horizontal scrollbar, which is
independent of whether it is currently displayed by the scroll pane or not.

getScrollbarDisplayPolicy()
Returns the display policy for the scrollbars.

getScrollPosition()
Returns the current x,y position within the child which is displayed at the 0,0 location of
the scrolled panel's view port.

getVAdjustable()
Returns the Adjustable object which represents the state of the vertical scrollbar.

getViewportSize()
Returns the current size of the scroll pane's view port.

getVScrollbarWidth()
Returns the width that would be occupied by a vertical scrollbar, which is independent
of whether it is currently displayed by the scroll pane or not.

paramString()
Returns the parameter string representing the state of this container.

printComponents(Graphics)
Prints the component in this scroll pane.

Volume IV Technical Reference Architecture 56

setLayout(LayoutManager)
Sets the layout manager for this container.

setScrollPosition(int, int)
Scrolls to the specified position within the child component.

setScrollPosition(Point)
Scrolls to the specified position within the child component.

3.4.4.5.3 Class Name: Window

Description: A Window object is a top-level window with no borders and no menubar. It could be used to implement
a pop-up menu. A Window object blocks input to other application windows when it is shown.

Structure:
Specialization_Of: Container

Attributes:

Methods: addNotify()
Creates the Window's peer.

dispose()
Disposes of this window.

getFocusOwner()
Returns the child component of this Window which has focus if and only if this Window
is active.

getLocale()
Gets the Locale object that is associated with this window, if the locale has been set.

getToolkit()
Returns the toolkit of this frame.

getWarningString()
Gets the warning string that is displayed with this window.

isShowing()
Checks if this Window is showing on screen.

pack()
Causes subcomponents of this window to be laid out at their preferred size.

processEvent(AWTEvent)
Processes events on this window.

processWindowEvent(WindowEvent)
Processes window events occurring on this window by dispatching them to the
appropriate objects.

show()
Shows this window, and brings it to the front.

toBack()
Sends this window to the back.

toFront()
Brings this window to the front.

3.4.4.5.3.1 Class Name: Frame

Description: A Frame is a top-level window with a title and a border.

Structure:
Specialization_Of: Window

Volume IV Technical Reference Architecture 57

Attributes:

Methods: addNotify()
Creates the Frame's peer.

dispose()
Disposes of the Frame.

getIconImage()
Gets the icon image for this frame.

getMenuBar()
Gets the menu bar for this frame.

getTitle()
Gets the title of the frame.

isResizable()
Indicates whether this frame is resizable.

paramString()
Returns the parameter String of this Frame.

remove(MenuComponent)
Removes the specified menu bar from this frame.

setIconImage(Image)
Sets the image to display when this frame is iconized.

setMenuBar(MenuBar)
Sets the menu bar for this frame to the specified menu bar.

setResizable(boolean)
Sets the resizable flag, which determines whether this frame is resizable.

setTitle(String)
Sets the title for this frame to the specified title.

3.4.4.5.3.2 Class Name: Dialog

Description: A class that produces a dialog - a window that takes input from the user.

Structure:
Specialization_Of: Window

Attributes:

Methods: addNotify()
Creates the dialog's peer.

getTitle()
Gets the title of the dialog.

isModal()
Indicates whether the dialog is modal.

isResizable()
Indicates whether this dialog window is resizable.

paramString()
Returns the parameter string representing the state of this dialog window.

setModal(boolean)
Specifies whether this dialog is modal.

setResizable(boolean)
Sets the resizable flag.

setTitle(String)

Volume IV Technical Reference Architecture 58

Sets the title of the Dialog.
show()

Shows the dialog.

3.4.4.5.3.2.1 Class Name: FileDialog

Description: The FileDialog class displays a dialog window from which the user can select a file.

Structure:
Specialization_Of: Dialog

Attributes: LOAD
This constant value indicates that the purpose of the file dialog window is to locate a file
from which to read.

 SAVE
This constant value indicates that the purpose of the file dialog window is to locate a file
to which to write.

Methods: addNotify()
Creates the file dialog's peer.

getDirectory()
Gets the directory of this file dialog.

getFile()
Gets the selected file of this file dialog.

getFilenameFilter()
Determines this file dialog's filename filter.

getMode()
Indicates whether this file dialog box is for loading from a file or for saving to a file.

paramString()
Returns the parameter string representing the state of this file dialog window.

setDirectory(String)
Sets the directory of this file dialog window to be the specified directory.

setFile(String)
Sets the selected file for this file dialog window to be the specified file.

setFilenameFilter(FilenameFilter)
Sets the filename filter for this file dialog window to the specified filter.

setMode(int)
Sets the mode of the file dialog.

3.4.4.6 Class Name: Label

Description: A Label object is a component for placing text in a container. A label displays a single line of read-
only text. The text can be changed by the application, but a user cannot edit it directly.

Structure:
Specialization_Of: Component

Attributes:

Methods: addNotify()
Creates the peer for this label.

getAlignment()

Volume IV Technical Reference Architecture 59

Gets the current alignment of this label.
getText()

Gets the text of this label.
paramString()

Returns the parameter string representing the state of this label.
setAlignment(int)

Sets the alignment for this label to the specified alignment.
setText(String)

Sets the text for this label to the specified text.

3.4.4.7 Class Name: List

Description: The List component presents the user with a scrolling list of text items. The list can be set up so that
the user can choose either one item or multiple items.

Structure:
Specialization_Of: Component

Attributes:

Methods: add(String)
Adds the specified item to the end of scrolling list.

add(String, int)
Adds the specified item to the end of the scrolling list.

addNotify()
Creates the peer for the list.

deselect(int)
Deselects the item at the specified index.

getItem(int)
Gets the item associated with the specified index.

getItemCount()
Gets the number of items in the list.

getItems()
Gets the items in the list.

getMinimumSize()
Determines the minimum size of this scrolling list.

getMinimumSize(int)
Gets the minumum dimensions for a list with the specified number of rows.

getPreferredSize()
Gets the preferred size of this scrolling list.

getPreferredSize(int)
Gets the preferred dimensions for a list with the specified number of rows.

getRows()
Get the number of visible lines in this list.

getSelectedIndex()
Gets the index of the selected item on the list,

getSelectedIndexes()
Gets the selected indexes on the list.

getSelectedItem()
Get the selected item on this scrolling list.

getSelectedItems()
Get the selected items on this scrolling list.

getSelectedObjects()

Volume IV Technical Reference Architecture 60

Returns the selected items on the list in an array of Objects.
getVisibleIndex()

Gets the index of the item that was last made visible by the method makeVisible.
isIndexSelected(int)

Determines if the specified item in this scrolling list is selected.
isMultipleMode()

Determines whether this list allows multiple selections.
makeVisible(int)

Makes the item at the specified index visible.
paramString()

Returns the parameter string representing the state of this scrolling list.
processActionEvent(ActionEvent)

Processes action events occurring on this component by dispatching them to the
appropriate registered objects.

processEvent(AWTEvent)
Processes events on this scrolling list.

processItemEvent(ItemEvent)
Processes item events occurring on this list by dispatching them to the appropriate
registered objects.

remove(int)
Remove the item at the specified position from this scrolling list.

remove(String)
Removes the first occurrence of an item from the list.

removeAll()
Removes all items from this list.

removeNotify()
Removes the peer for this list.

replaceItem(String, int)
Replaces the item at the specified index in the scrolling list with the new string.

select(int)
Selects the item at the specified index in the scrolling list.

setMultipleMode(boolean)
Sets the flag that determines whether this list allows multiple selections.

3.4.4.8 Class Name: Scrollbar

Description: The Scrollbar class embodies a scroll bar, a familiar user-interface object. A scroll bar provides a
convenient means for allowing a user to select from a range of values.

Structure:
Specialization_Of: Component

Attributes:

Methods: addNotify()
Creates the Scrollbar's peer.

getBlockIncrement()
Gets the block increment of this scroll bar.

getMaximum()
Gets the maximum value of this scroll bar.

getMinimum()
Gets the minimum value of this scroll bar.

getOrientation()

Volume IV Technical Reference Architecture 61

Determines the orientation of this scroll bar.
getUnitIncrement()

Gets the unit increment for this scrollbar.
getValue()

Gets the current value of this scroll bar.
getVisibleAmount()

Gets the visible amount of this scroll bar.
paramString()

Returns the parameter string representing the state of this scroll bar.
processAdjustmentEvent(AdjustmentEvent)

Processes adjustment events occurring on this scrollbar by dispatching them to the
appropriate registered objects.

processEvent(AWTEvent)
Processes events on this scroll bar.

setBlockIncrement(int)
Sets the block increment for this scroll bar.

setMaximum(int)
Sets the maximum value of this scroll bar.

setMinimum(int)
Sets the minimum value of this scroll bar.

setOrientation(int)
Sets the orientation for this scroll bar.

setUnitIncrement(int)
Sets the unit increment for this scroll bar.

setValue(int)
Sets the value of this scroll bar to the specified value.

setValues(int, int, int, int)
Sets the values of four properties for this scroll bar.

setVisibleAmount(int)
Sets the visible amount of this scroll bar.

3.4.4.9 Class Name: TextComponent

Description: The TextComponent class is the superclass of any component that allows the editing of some text.

Structure:
Specialization_Of: Component

Attributes:

Methods: getCaretPosition()
Gets the position of the text insertion caret for this text component.

getSelectedText()
Gets the selected text from the text that is presented by this text component.

getSelectionEnd()
Gets the end position of the selected text in this text component.

getSelectionStart()
Gets the start position of the selected text in this text component.

getText()
Gets the text that is presented by this text component.

isEditable()
Indicates whether or not this text component is editable.

paramString()
Returns the parameter string representing the state of this text component.

Volume IV Technical Reference Architecture 62

processEvent(AWTEvent)
Processes events on this textcomponent.

processTextEvent(TextEvent)
Processes text events occurring on this text component by dispatching them to any
appropriate objects.

removeNotify()
Removes the TextComponent's peer.

select(int, int)
Selects the text between the specified start and end positions.

selectAll()
Selects all the text in this text component.

setCaretPosition(int)
Sets the position of the text insertion caret for this text component.

setEditable(boolean)
Sets the flag that determines whether or not this text component is editable.

setSelectionEnd(int)
Sets the selection end for this text component to the specified position.

setSelectionStart(int)
Sets the selection start for this text component to the specified position.

setText(String)
Sets the text that is presented by this text component to be the specified text.

3.4.4.9.1 Class Name: TextArea

Description: A TextArea object is a multi-line region that displays text. It can be set to allow editing or to be read-
only.

Structure:
Specialization_Of: TextComponent

Attributes: SCROLLBARS_BOTH
Create and display both vertical and horizontal scrollbars.

SCROLLBARS_HORIZONTAL_ONLY
Create and display horizontal scrollbar only.

SCROLLBARS_NONE
Do not create or display any scrollbars for the text area.

SCROLLBARS_VERTICAL_ONLY
Create and display vertical scrollbar only.

Methods: addNotify()
Creates the TextArea's peer.

append(String)
Appends the given text to the text area's current text.

getColumns()
Gets the number of columns in this text area.

getMinimumSize()
Determines the minimum size of this text area.

getMinimumSize(int, int)
Determines the minimum size of a text area with the specified number of rows and
columns.

getPreferredSize()
Determines the preferred size of this text area.

getPreferredSize(int, int)

Volume IV Technical Reference Architecture 63

Determines the preferred size of a text area with the specified number of rows and
columns.

getRows()
Gets the number of rows in the text area.

getScrollbarVisibility()
Gets an enumerated value that indicates which scroll bars the text area uses.

insert(String, int)
Inserts the specified text at the specified position in this text area.

paramString()
Returns the parameter string representing the state of this text area.

replaceRange(String, int, int)
Replaces text between the indicated start and end positions with the specified
replacement text.

setColumns(int)
Sets the number of columns for this text area.

setRows(int)
Sets the number of rows for this text area.

3.4.4.9.2 Class Name: TextField

Description: A TextField object is a text component that allows for the editing of a single line of text.

Structure:
Specialization_Of: TextComponent

Attributes:

Methods: addNotify()
Creates the TextField's peer.

echoCharIsSet()
Indicates whether or not this text field has a character set for echoing.

getColumns()
Gets the number of columns in this text field.

getEchoChar()
Gets the character that is to be used for echoing.

getMinimumSize()
Gets the minumum dimensions for this text field.

getMinimumSize(int)
Gets the minumum dimensions for a text field with the specified number of columns.

getPreferredSize()
Gets the preferred size of this text field.

getPreferredSize(int)
Gets the preferred size of this text field with the specified number of columns.

paramString()
Returns the parameter string representing the state of this text field.

processActionEvent(ActionEvent)
Processes action events occurring on this text field by dispatching them to any
appropriate objects.

processEvent(AWTEvent)
Processes events on this text field.

setColumns(int)
Sets the number of columns in this text field.

setEchoChar(char)
Sets the echo character for this text field.

Volume IV Technical Reference Architecture 64

3.4.5 Class Name: Cursor

Description: A class to encapsulate the bitmap representation of the mouse cursor.

Structure:
Specialization_Of: Information Presenter

Attributes: CROSSHAIR_CURSOR
The crosshair cursor type.

DEFAULT_CURSOR
The default cursor type (gets set if no cursor is defined).

E_RESIZE_CURSOR
The east-resize cursor type.

HAND_CURSOR
The hand cursor type.

MOVE_CURSOR
The move cursor type.

N_RESIZE_CURSOR
The north-resize cursor type.

NE_RESIZE_CURSOR
The north-east-resize cursor type.

NW_RESIZE_CURSOR
The north-west-resize cursor type.

predefined
S_RESIZE_CURSOR

The south-resize cursor type.
SE_RESIZE_CURSOR

The south-east-resize cursor type.
SW_RESIZE_CURSOR

The south-west-resize cursor type.
TEXT_CURSOR

The text cursor type.
W_RESIZE_CURSOR

The west-resize cursor type.
WAIT_CURSOR

The wait cursor type.

Methods: getDefaultCursor()
Return the system default cursor.

getPredefinedCursor(int)
Returns a cursor object with the specified predefined type.

getType()
Returns the type for this cursor.

3.4.6 Class Name: Dimension

Description: The Dimension class encapsulates the width and height of a component in a single object. The class is
associated with certain properties of components.

Structure:

Specialization_Of: Information Presenter

Volume IV Technical Reference Architecture 65

Attributes: height
An object’s height dimension.

width
An object’s width dimension.

Methods: equals(Object)
Checks whether two dimension objects have equal values.

getSize()
Gets the size of this Dimension object.

setSize(Dimension)
Set the size of this Dimension object to the specified size.

setSize(int, int)
Set the size of this Dimension object to the specified width and height.

toString()
Returns a string that represents this Dimension object's values.

3.4.7 Class Name: EventQueue

Description: EventQueue is a platform-independent class that queues events, both from the underlying peer classes
and from trusted application classes. There is only one EventQueue for the system.

Structure:
Specialization_Of: Information Presenter

Attributes:

Methods: getNextEvent()
Remove an event from the queue and return it.

peekEvent()
Return the first event without removing it.

peekEvent(int)
postEvent(AWTEvent)

Post a 1.1-style event to the EventQueue.

3.4.8 Class Name: Font

Description: A class that produces font objects.

Structure:
Specialization_Of: Information Presenter

Attributes: BOLD
The bold style constant.

ITALIC
The italicized style constant.

name
The logical name of this font.

PLAIN
The plain style constant.

size
The point size of this font.

Volume IV Technical Reference Architecture 66

style
The style of the font.

Methods: decode(String)
Gets the specified font using the name passed in.

equals(Object)
Compares this object to the specifed object.

getFamily()
Gets the platform specific family name of the font.

getFont(String)
Gets a font from the system properties list.

getFont(String, Font)
Gets the specified font from the system properties list.

getName()
Gets the logical name of the font.

getPeer()
Gets the peer of the font.

getSize()
Gets the point size of the font.

getStyle()
Gets the style of the font.

hashCode()
Returns a hashcode for this font.

isBold()
Indicates whether the font's style is bold.

isItalic()
Indicates whether the font's style is italic.

isPlain()
Indicates whether the font's style is plain.

toString()
Converts this object to a String representation.

3.4.9 Class Name: FontMetrics

Description: A font metrics object, which gives information about the rendering of a particular font on a particular
screen.

Structure:
Specialization_Of: Information Presenter

Attributes:

Methods: getAscent()
getDescent()
getLeading()
getMaxAdvance()
charWidth(char ch)
charsWidth(char data[], int off, int len)

Volume IV Technical Reference Architecture 67

3.4.10 Class Name: Graphics

Description: The Graphics class is the abstract base class for all graphics contexts that allow an application to draw
onto components that are realized on various devices, as well as onto off-screen images.

A Graphics object encapsulates state information needed for the basic rendering operations that the GUI supports. This
stateinformation includes the following properties:

n The Component object on which to draw.

n A translation origin for rendering and clipping coordinates.

n The current clip.

n The current color.

n The current font.

n The current logical pixel operation function (XOR or Paint).

n The current XOR alternation color (see setXORMode).

Structure:
Specialization_Of: Information Presenter

Attributes:

Methods: clearRect(int, int, int, int)
Clears the specified rectangle by filling it with the background color of the current
drawing surface.

clipRect(int, int, int, int)
Intersects the current clip with the specified rectangle.

copyArea(int, int, int, int, int, int)
Copies an area of the component by a distance specified by dx and dy.

create()
Creates a new Graphics object that is a copy of this Graphics object.

create(int, int, int, int)
Creates a new Graphics object based on this Graphics object, but with a new translation
and clip area.

dispose()
Disposes of this graphics context and releases any system resources that it is using.

draw3DRect(int, int, int, int, boolean)
Draws a 3-D highlighted outline of the specified rectangle.

drawArc(int, int, int, int, int, int)
Draws the outline of a circular or elliptical arc covering the specified rectangle.

drawBytes(byte[], int, int, int, int)
Draws the text given by the specified byte array, using this graphics context's current
font and color.

drawChars(char[], int, int, int, int)
Draws the text given by the specified character array, using this graphics context's
current font and color.

drawImage(Image, int, int, Color, ImageObserver)

Volume IV Technical Reference Architecture 68

Draws as much of the specified image as is currently available.
drawImage(Image, int, int, ImageObserver)

Draws as much of the specified image as is currently available.
drawImage(Image, int, int, int, int, Color, ImageObserver)

Draws as much of the specified image as has already been scaled to fit inside the
specified rectangle.

drawImage(Image, int, int, int, int, ImageObserver)
Draws as much of the specified image as has already been scaled to fit inside the
specified rectangle.

drawImage(Image, int, int, int, int, int, int, int, int, Color, ImageObserver)
Draws as much of the specified area of the specified image as is currently available,
scaling it on the fly to fit inside the specified area of the destination drawable surface.

drawImage(Image, int, int, int, int, int, int, int, int, ImageObserver)
Draws as much of the specified area of the specified image as is currently available,
scaling it on the fly to fit inside the specified area of the destination drawable surface.

drawLine(int, int, int, int)
Draws a line, using the current color, between the points (x1, y1) and (x2, y2) in this
graphics context's coordinate system.

drawOval(int, int, int, int)
Draws the outline of an oval.

drawPolygon(int[], int[], int)
Draws a closed polygon defined by arrays of x and y coordinates.

drawPolygon(Polygon)
Draws the outline of a polygon defined by the specified Polygon object.

drawPolyline(int[], int[], int)
Draws a sequence of connected lines defined by arrays of x and y coordinates.

drawRect(int, int, int, int)
Draws the outline of the specified rectangle.

drawRoundRect(int, int, int, int, int, int)
Draws an outlined round-cornered rectangle using this graphics context's current color.

drawString(String, int, int)
Draws the text given by the specified string, using this graphics context's current font
and color.

fill3DRect(int, int, int, int, boolean)
Paints a 3-D highlighted rectangle filled with the current color.

fillArc(int, int, int, int, int, int)
Fills a circular or elliptical arc covering the specified rectangle.

fillOval(int, int, int, int)
Fills an oval bounded by the specified rectangle with the current color.

fillPolygon(int[], int[], int)
Fills a closed polygon defined by arrays of x and y coordinates.

fillPolygon(Polygon)
Fills the polygon defined by the specified Polygon object with the graphics context's
current color.

fillRect(int, int, int, int)
Fills the specified rectangle.

fillRoundRect(int, int, int, int, int, int)
Fills the specified rounded corner rectangle with the current color.

finalize()
Disposes of this graphics context once it is no longer referenced.

getClip()
Gets the current clipping area.

getClipBounds()
Returns the bounding rectangle of the current clipping area.

Volume IV Technical Reference Architecture 69

getColor()
Gets this graphics context's current color.

getFont()
Gets the current font.

getFontMetrics()
Gets the font metrics of the current font.

getFontMetrics(Font)
Gets the font metrics for the specified font.

setClip(int, int, int, int)
Sets the current clip to the rectangle specified by the given coordinates.

setClip(Shape)
Sets the current clipping area to an arbitrary clip shape.

setColor(Color)
Sets this graphics context's current color to the specified color.

setFont(Font)
Sets this graphics context's font to the specified font.

setPaintMode()
Sets the paint mode of this graphics context to overwrite the destination with this
graphics context's current color.

setXORMode(Color)
Sets the paint mode of this graphics context to alternate between this graphics context's
current color and the new specified color.

toString()
Returns a String object representing this Graphics object's value.

translate(int, int)
Translates the origin of the graphics context to the point (x, y) in the current coordinate
system.

3.4.11 Class Name: GUIEvent

Description: The root event class for all GUI events.

Structure:
Specialization_Of: Information Presenter

Attributes: ACTION_EVENT_MASK
The event mask for selecting action events.

ADJUSTMENT_EVENT_MASK
The event mask for selecting adjustment events.

COMPONENT_EVENT_MASK
The event mask for selecting component events.

consumed
CONTAINER_EVENT_MASK

The event mask for selecting container events.
FOCUS_EVENT_MASK

The event mask for selecting focus events.
id
ITEM_EVENT_MASK

The event mask for selecting item events.
KEY_EVENT_MASK

The event mask for selecting key events.
MOUSE_EVENT_MASK

Volume IV Technical Reference Architecture 70

The event mask for selecting mouse events.
MOUSE_MOTION_EVENT_MASK

The event mask for selecting mouse motion events.
RESERVED_ID_MAX

The maximum value for reserved AWT event IDs.
TEXT_EVENT_MASK

The event mask for selecting text events.
WINDOW_EVENT_MASK

The event mask for selecting window events.

Methods: getID()
Returns the event type.

toString()
Returns a string representation of the object.

3.4.12 Class Name: GUIEventMulticaster

Description: A class which implements efficient and thread-safe multi-cast event dispatching for the GUI. This class
will manage an immutable structure consisting of a chain of event listeners and will dispatch events to those listeners.
Because the structure is immutable, it is safe to use this API to add/remove listeners during the process of an event
dispatch operation.

Structure:
Specialization_Of: Information Presenter

Attributes: a
EventListener a

b
EventListener b

Methods: actionPerformed(ActionEvent)
Handles the actionPerformed event by invoking the actionPerformed methods on
listener-a and listener-b.

add(ActionListener, ActionListener)
Adds action-listener-a with action-listener-b and returns the resulting multicast listener.

add(AdjustmentListener, AdjustmentListener)
Adds adjustment-listener-a with adjustment-listener-b and returns the resulting
multicast listener.

add(ComponentListener, ComponentListener)
Adds component-listener-a with component-listener-b and returns the resulting
multicast listener.

add(ContainerListener, ContainerListener)
Adds container-listener-a with container-listener-b and returns the resulting multicast
listener.

add(FocusListener, FocusListener)
Adds focus-listener-a with focus-listener-b and returns the resulting multicast listener.

add(ItemListener, ItemListener)
Adds item-listener-a with item-listener-b and returns the resulting multicast listener.

add(KeyListener, KeyListener)
Adds key-listener-a with key-listener-b and returns the resulting multicast listener.

add(MouseListener, MouseListener)
Adds mouse-listener-a with mouse-listener-b and returns the resulting multicast listener.

add(MouseMotionListener, MouseMotionListener)

Volume IV Technical Reference Architecture 71

Adds mouse-motion-listener-a with mouse-motion-listener-b and returns the resulting
multicast listener.

add(TextListener, TextListener)
add(WindowListener, WindowListener)

Adds window-listener-a with window-listener-b and returns the resulting multicast
listener.

addInternal(EventListener, EventListener)
Returns the resulting multicast listener from adding listener-a and listener-b together.

adjustmentValueChanged(AdjustmentEvent)
Handles the adjustmentValueChanged event by invoking the adjustmentValueChanged
methods on listener-a and listener-b.

componentAdded(ContainerEvent)
Handles the componentAdded container event by invoking the componentAdded
methods on listener-a and listener-b.

componentHidden(ComponentEvent)
Handles the componentHidden event by invoking the componentHidden methods on
listener-a and listener-b.

componentMoved(ComponentEvent)
Handles the componentMoved event by invoking the componentMoved methods on
listener-a and listener-b.

componentRemoved(ContainerEvent)
Handles the componentRemoved container event by invoking the componentRemoved
methods on listener-a and listener-b.

componentResized(ComponentEvent)
Handles the componentResized event by invoking the componentResized methods on
listener-a and listener-b.

componentShown(ComponentEvent)
Handles the componentShown event by invoking the componentShown methods on
listener-a and listener-b.

focusGained(FocusEvent)
Handles the focusGained event by invoking the focusGained methods on listener-a and
listener-b.

focusLost(FocusEvent)
Handles the focusLost event by invoking the focusLost methods on listener-a and
listener-b.

itemStateChanged(ItemEvent)
Handles the itemStateChanged event by invoking the itemStateChanged methods on
listener-a and listener-b.

keyPressed(KeyEvent)
Handles the keyPressed event by invoking the keyPressed methods on listener-a and
listener-b.

keyReleased(KeyEvent)
Handles the keyReleased event by invoking the keyReleased methods on listener-a and
listener-b.

keyTyped(KeyEvent)
Handles the keyTyped event by invoking the keyTyped methods on listener-a and
listener-b.

mouseClicked(MouseEvent)
Handles the mouseClicked event by invoking the mouseClicked methods on listener-a
and listener-b.

mouseDragged(MouseEvent)
Handles the mouseDragged event by invoking the mouseDragged methods on listener-a
and listener-b.

mouseEntered(MouseEvent)

Volume IV Technical Reference Architecture 72

Handles the mouseEntered event by invoking the mouseEntered methods on listener-a
and listener-b.

mouseExited(MouseEvent)
Handles the mouseExited event by invoking the mouseExited methods on listener-a and
listener-b.

mouseMoved(MouseEvent)
Handles the mouseMoved event by invoking the mouseMoved methods on listener-a and
listener-b.

mousePressed(MouseEvent)
Handles the mousePressed event by invoking the mousePressed methods on listener-a
and listener-b.

mouseReleased(MouseEvent)
Handles the mouseReleased event by invoking the mouseReleased methods on listener-a
and listener-b.

remove(ActionListener, ActionListener)
Removes the old action-listener from action-listener-l and returns the resulting multicast
listener.

remove(AdjustmentListener, AdjustmentListener)
Removes the old adjustment-listener from adjustment-listener-l and returns the resulting
multicast listener.

remove(ComponentListener, ComponentListener)
Removes the old component-listener from component-listener-l and returns the resulting
multicast listener.

remove(ContainerListener, ContainerListener)
Removes the old container-listener from container-listener-l and returns the resulting
multicast listener.

remove(EventListener)
Removes a listener from this multicaster and returns the resulting multicast listener.

remove(FocusListener, FocusListener)
Removes the old focus-listener from focus-listener-l and returns the resulting multicast
listener.

remove(ItemListener, ItemListener)
Removes the old item-listener from item-listener-l and returns the resulting multicast
listener.

remove(KeyListener, KeyListener)
Removes the old key-listener from key-listener-l and returns the resulting multicast
listener.

remove(MouseListener, MouseListener)
Removes the old mouse-listener from mouse-listener-l and returns the resulting
multicast listener.

remove(MouseMotionListener, MouseMotionListener)
Removes the old mouse-motion-listener from mouse-motion-listener-l and returns the
resulting multicast listener.

remove(TextListener, TextListener)
remove(WindowListener, WindowListener)

Removes the old window-listener from window-listener-l and returns the resulting
multicast listener.

removeInternal(EventListener, EventListener)
Returns the resulting multicast listener after removing the old listener from listener-l.

save(ObjectOutputStream, String, EventListener)
saveInternal(ObjectOutputStream, String)
textValueChanged(TextEvent)
windowActivated(WindowEvent)

Volume IV Technical Reference Architecture 73

Handles the windowActivated event by invoking the windowActivated methods on
listener-a and listener-b.

windowClosed(WindowEvent)
Handles the windowClosed event by invoking the windowClosed methods on listener-a
and listener-b.

windowClosing(WindowEvent)
Handles the windowClosing event by invoking the windowClosing methods on listener-a
and listener-b.

windowDeactivated(WindowEvent)
Handles the windowDeactivated event by invoking the windowDeactivated methods on
listener-a and listener-b.

windowDeiconified(WindowEvent)
Handles the windowDeiconfied event by invoking the windowDeiconified methods on
listener-a and listener-b.

windowIconified(WindowEvent)
Handles the windowIconified event by invoking the windowIconified methods on
listener-a and listener-b.

windowOpened(WindowEvent)
Handles the windowOpened event by invoking the windowOpened methods on listener-a
and listener-b.

3.4.13 Class Name: Image

Description: The abstract class Image is the superclass of all classes that represent graphical images. The image
must be obtained in a platform-specific manner.

Structure:
Specialization_Of: Information Presenter

Attributes: SCALE_AREA_AVERAGING
Use the Area Averaging image scaling algorithm.

SCALE_DEFAULT
Use the default image-scaling algorithm.

SCALE_FAST
Choose an image-scaling algorithm that gives higher priority to scaling speed than
smoothness of the scaled image.

SCALE_REPLICATE
Use the image scaling algorithm embodied in the ReplicateScaleFilter class.

SCALE_SMOOTH
Choose an image-scaling algorithm that gives higher priority to image smoothness than
scaling speed.

UndefinedProperty
The UndefinedProperty object should be returned whenever a property which was not
defined for a particular image is fetched.

Methods: flush()
Flushes all resources being used by this Image object.

getGraphics()
Creates a graphics context for drawing to an off-screen image.

getHeight(ImageObserver)
Determines the height of the image.

getProperty(String, ImageObserver)
Gets a property of this image by name.

Volume IV Technical Reference Architecture 74

getScaledInstance(int, int, int)
Creates a scaled version of this image.

getSource()
Gets the object that produces the pixels for the image.

getWidth(ImageObserver)
Determines the width of the image.

3.4.14 Class Name: Insets

Description: An Insets object is a representation of the borders of a container. It specifies the space that a container
must leave at each of its edges. The space can be a border, a blank space, or a title.

Structure:
Specialization_Of: Information Presenter

Attributes: bottom
The inset from the bottom.

left
The inset from the left.

right
The inset from the right.

top
The inset from the top.

Methods: clone()
Create a copy of this object.

equals(Object)
Checks whether two insets objects are equal.

toString()
Returns a String object representing this Insets object's values.

3.4.15 Class Name: LayoutManager

Description: Defines the LayoutManager class that is used to layout components in Containers.

Structure:
Specialization_Of: Information Presenter

Attributes:

Methods: addLayoutComponent(String, Component)
Adds the specified component with the specified name to the layout.

layoutContainer(Container)
Lays out the container in the specified panel.

minimumLayoutSize(Container)
Calculates the minimum size dimensions for the specified panel given the components
in the specified parent container.

preferredLayoutSize(Container)
Calculates the preferred size dimensions for the specified panel given the components in
the specified parent container.

removeLayoutComponent(Component)
Removes the specified component from the layout.

Volume IV Technical Reference Architecture 75

3.4.16 Class Name: MediaTracker

Description: The MediaTracker class is a utility class to track the status of a number of media objects. Media objects
could include audio clips as well as images.

Structure:
Specialization_Of: Information Presenter

Attributes: ABORTED
Flag indicating that the downloading of some media was aborted.

COMPLETE
Flag indicating that the downloading of media was completed successfully.

ERRORED
Flag indicating that the downloading of some media encountered an error.

LOADING
Flag indicating some media is currently being loaded.

Methods: addImage(Image, int)
Adds an image to the list of images being tracked by this media tracker.

addImage(Image, int, int, int)
Adds a scaled image to the list of images being tracked by this media tracker.

checkAll()
Checks to see if all images being tracked by this media tracker have finished loading.

checkAll(boolean)
Checks to see if all images being tracked by this media tracker have finished loading.

checkID(int)
Checks to see if all images tracked by this media tracker that are tagged with the
specified identifier have finished loading.

checkID(int, boolean)
Checks to see if all images tracked by this media tracker that are tagged with the
specified identifier have finished loading.

getErrorsAny()
Returns a list of all media that have encountered an error.

getErrorsID(int)
Returns a list of media with the specified ID that have encountered an error.

isErrorAny()
Checks the error status of all of the images.

isErrorID(int)
Checks the error status of all of the images tracked by this media tracker with the
specified identifier.

removeImage(Image)
Remove the specified image from this media tracker.

removeImage(Image, int)
Remove the specified image from the specified tracking ID of this media tracker.

removeImage(Image, int, int, int)
Remove the specified image with the specified width, height, and ID from this media
tracker.

statusAll(boolean)
Calculates and returns the bitwise inclusive OR of the status of all media that are
tracked by this media tracker.

Volume IV Technical Reference Architecture 76

statusID(int, boolean)
Calculates and returns the bitwise inclusive OR of the status of all media with the
specified identifier that are tracked by this media tracker.

waitForAll()
Starts loading all images tracked by this media tracker.

waitForAll(long)
Starts loading all images tracked by this media tracker.

waitForID(int)
Starts loading all images tracked by this media tracker with the specified identifier.

waitForID(int, long)
Starts loading all images tracked by this media tracker with the specified identifier.

3.4.17 Class Name: MenuComponent

Description: The abstract class MenuComponent is the superclass of all menu-related components. In this respect,
the class MenuComponent is analogous to the abstract superclass Component for GUI components.

Structure:
Specialization_Of: Information Presenter

Attributes:

Methods: dispatchEvent(AWTEvent)
getFont()

Gets the font used for this menu component.
getName()

Gets the name of the menu component.
getParent()

Returns the parent container for this menu component.
paramString()

Returns the parameter string representing the state of this menu component.
processEvent(AWTEvent)

Processes events occurring on this menu component.
removeNotify()

Removes the menu component's peer.
setFont(Font)

Sets the font to be used for this menu component to the specified font.
setName(String)

Sets the name of the component to the specified string.
toString()

Returns a representation of this menu component as a string.
3.4.17.1 Class Name: MenuBar

Description: The MenuBar class encapsulates the platform's concept of a menu bar bound to a frame.

Structure:
Specialization_Of: MenuComponent

Attributes:

Methods: add(Menu)
Adds the specified menu to the menu bar.

Volume IV Technical Reference Architecture 77

addNotify()
Creates the menu bar's peer.

deleteShortcut(MenuShortcut)
Deletes the specified menu shortcut.

getHelpMenu()
Gets the help menu on the menu bar.

getMenu(int)
Gets the specified menu.

getMenuCount()
Gets the number of menus on the menu bar.

getShortcutMenuItem(MenuShortcut)
Gets the instance of MenuItem associated with the specified MenuShortcut object, or
null if none has been specified.

remove(int)
Removes the menu located at the specified index from this menu bar.

remove(MenuComponent)
Removes the specified menu component from this menu bar.

removeNotify()
Removes the menu bar's peer.

setHelpMenu(Menu)
Sets the help menu on this menu bar to be the specified menu.

shortcuts()
Gets an enumeration of all menu shortcuts this menu bar is managing.

3.4.17.2 Class Name: MenuItem

Description: All items in a menu must belong to the class MenuItem The default MenuItem object embodies a
simple labeled menu item.

Structure:
Specialization_Of: MenuComponent

Attributes:

Methods: addNotify()
Creates the menu item's peer.

deleteShortcut()
Delete any MenuShortcut object associated with this menu item.

disableEvents(long)
Disables event delivery to this menu item for events defined by the specified event mask
parameter.

enableEvents(long)
Enables event delivery to this menu item for events to be defined by the specified event
mask parameter.

getActionCommand()
Gets the command name of the action event that is fired by this menu item.

getLabel()
Gets the label for this menu item.

getShortcut()
Get the MenuShortcut object associated with this menu item,

isEnabled()
Checks whether this menu item is enabled.

paramString()

Volume IV Technical Reference Architecture 78

Returns the parameter string representing the state of this menu item.
processActionEvent(ActionEvent)

Processes action events occurring on this menu item, by dispatching them to any
appropriate objects.

processEvent(AWTEvent)
Processes events on this menu item.

setActionCommand(String)
Sets the command name of the action event that is fired by this menu item.

setEnabled(boolean)
Sets whether or not this menu item can be chosen.

setLabel(String)
Sets the label for this menu item to the specified label.

setShortcut(MenuShortcut)
Set the MenuShortcut object associated with this menu item.

3.4.17.2.1 Class Name: CheckboxMenuItem

Description: This class represents a check box that can be included in a menu. Clicking on the check box in the
menu changes its state from "on" to "off" or from "off" to "on."

Structure:
Specialization_Of: MenuItem

Attributes:

Methods: addNotify()
Creates the peer of the checkbox item.

getSelectedObjects()
Returns the an array (length 1) containing the checkbox menu item label or null if the
checkbox is not selected.

getState()
Determines whether the state of this check box menu item is "on" or "off."

paramString()
Returns the parameter string representing the state of this check box menu item.

processEvent(AWTEvent)
Processes events on this check box menu item.

processItemEvent(ItemEvent)
Processes item events occurring on this check box menu item by dispatching them to any
appropriate objects.

setState(boolean)
Sets this check box menu item to the specifed state.

3.4.17.2.2 Class Name: Menu

Description: A Menu object is a pull-down menu component that is deployed from a menu bar. A menu can
optionally be a tear-off menu. A tear-off menu can be opened and dragged away from its parent menu bar or menu. It
remains on the screen after the mouse button has been released. The mechanism for tearing off a menu is platform
dependent, since the look and feel of the tear-off menu is determined by its peer. On platforms that do not support tear-off
menus, the tear-off property is ignored.

Each item in a menu must belong to the MenuItem class.

Volume IV Technical Reference Architecture 79

Structure:
Specialization_Of: MenuItem

Attributes:

Methods: add(MenuItem)
Adds the specified menu item to this menu.

add(String)
Adds an item with the specified label to this menu.

addNotify()
Creates the menu's peer.

addSeparator()
Adds a separator line, or a hypen, to the menu at the current position.

getItem(int)
Gets the item located at the specified index of this menu.

getItemCount()
Get the number of items in this menu.

insert(MenuItem, int)
Inserts a menu item into this menu at the specified position.

insert(String, int)
Inserts a menu item with the specified label into this menu at the specified position.

insertSeparator(int)
Inserts a separator at the specified position.

isTearOff()
Indicates whether this menu is a tear-off menu.

paramString()
Gets the parameter string representing the state of this menu.

remove(int)
Removes the menu item at the specified index from this menu.

remove(MenuComponent)
Removes the specified menu item from this menu.

removeAll()
Removes all items from this menu.

removeNotify()
Removes the menu's peer.

3.4.17.2.2.1 Class Name: PopupMenu

Description: A class that implements a menu which can be dynamically popped up at a specified position within a
component.

Structure:
Specialization_Of: Menu

Attributes:

Methods: addNotify()
Creates the popup menu's peer.

show(Component, int, int)
Shows the popup menu at the x, y position relative to an origin component.

Volume IV Technical Reference Architecture 80

3.4.18 Class Name: MenuShortcut

Description: A class which represents a keyboard accelerator for a MenuItem.

Structure:
Specialization_Of: Information Presenter

Attributes:

Methods: equals(MenuShortcut)
Returns whether this MenuShortcut is the same as another: equality is defined to mean
that both MenuShortcuts use the same key and both either use or don't use the SHIFT
key.

getKey()
Return the raw keycode of this MenuShortcut.

paramString()
toString()

Returns an internationalized description of the MenuShortcut.
usesShiftModifier()

Return whether this MenuShortcut must be invoked using the SHIFT key.
3.4.19 Class Name: Point

Description: The Point class represents a location in a two-dimensional (x, y) coordinate space.

Structure:
Specialization_Of: Information Presenter

Attributes: x
The x coordinate.

y
The y coordinate.

Methods: equals(Object)
Determines whether two points are equal.

getLocation()
Returns the location of this point.

hashCode()
Returns the hashcode for this point.

move(int, int)
Moves this point to the specificed location in the (x, y) coordinate plane.

setLocation(int, int)
Changes the point to have the specificed location.

setLocation(Point)
Sets the location of the point to the specificed location.

toString()
Returns a representation of this point and its location in the (x, y) coordinate space as a
string.

translate(int, int)
Translates this point, at location (x, y), by dx along the x axis and dy along the y axis so
that it now represents the point (x + dx, y + dy).

Volume IV Technical Reference Architecture 81

3.4.20 Class Name: Polygon

Description: The Polygon class encapsulates a description of a closed, two-dimensional region within a coordinate
space. This region is bounded by an arbitrary number of line segments, each of which is one side of the polygon.
Internally, a polygon comprises of a list of (x, y) coordinate pairs, where each pair defines a vertex of the polygon, and two
successive pairs are the endpoints of a line that is a side of the polygon. The first and final pairs of (x, y) points are joined
by a line segment that closes the polygon.

Structure:

Specialization_Of: Information Presenter

Attributes: bounds
npoints

The total number of points.
xpoints

The array of x coordinates.
ypoints

The array of y coordinates.

Methods: addPoint(int, int)
Appends a point to this polygon.

contains(int, int)
Determines whether the specified point is contained by this polygon.

contains(Point)
Determines whether the specified point is inside the Polygon.

getBounds()
Gets the bounding box of this polygon.

translate(int, int)
Translates the vertices by deltaX along the x axis and by deltaY along the y axis.

3.4.21 Class Name: PrintJob

Description: An abstract class which initiates and executes a print job. It provides access to a print graphics object
which renders to an appropriate print device.

Structure:
Specialization_Of: Information Presenter

Attributes:

Methods: end()
Ends the print job and does any necessary cleanup.

finalize()
Ends this print job once it is no longer referenced.

getGraphics()
Gets a Graphics object that will draw to the next page.

getPageDimension()
Returns the dimensions of the page in pixels.

getPageResolution()
Returns the resolution of the page in pixels per inch.

lastPageFirst()
Returns true if the last page will be printed first.

Volume IV Technical Reference Architecture 82

3.4.22 Class Name: Rectangle

Description: A rectangle specifies an area in a coordinate space that is defined by the rectangle's top-left point (x, y)
in the coordinate space, its width, and its height.

Structure:
Specialization_Of: Information Presenter

Attributes: height
The height of the rectangle.

width
The width of the rectangle.

x
The x coordinate of the rectangle.

y
The y coordinate of the rectangle

Methods: add(int, int)
Adds a point, specified by the integer arguments newx and newy, to a rectangle.

add(Point)
Adds a point to this rectangle.

add(Rectangle)
Adds a rectangle to this rectangle.

contains(int, int)
Checks whether this rectangle contains the point at the specified location (x, y).

contains(Point)
Checks whether this rectangle contains the specified point.

equals(Object)
Checks whether two rectangles are equal.

getBounds()
Gets the bounding rectangle of this rectangle.

getLocation()
Returns the location of this rectangle.

getSize()
Gets the size (width and height) of this rectangle.

grow(int, int)
Grows the rectangle both horizontally and vertically.

hashCode()
Returns the hashcode for this rectangle.

intersection(Rectangle)
Computes the intersection of this rectangle with the specified rectangle.

intersects(Rectangle)
Determines whether this rectangle and the specified rectangle intersect.

isEmpty()
Determines whether this rectangle is empty.

setBounds(int, int, int, int)
Sets the bounding rectangle of this rectangle to the specified values for x, y, width, and
height.

setBounds(Rectangle)
Sets the bounding rectangle of this rectangle to match the specified rectangle.

setLocation(int, int)
Moves the rectangle to the specified location.

setLocation(Point)

Volume IV Technical Reference Architecture 83

Moves the rectangle to the specified location.
setSize(Dimension)

Sets the size of this rectangle to match the specified dimension.
setSize(int, int)

Sets the size of this rectangle to the specified width and height.
toString()

Returns a string representation of this rectangle and its values.
translate(int, int)

Translates the rectangle the indicated distance, to the right along the x coordinate axis,
and downward along the y coordinate axis.

union(Rectangle)
Computes the union of this rectangle with the specified rectangle.

3.4.23 Class Name: Toolkit

Description: This class is the abstract superclass of all actual implementations of the GUI Toolkit. Subclasses of
Toolkit are used to bind the various components to particular native toolkit implementations.

The methods defined by Toolkit are the "glue" that joins the platform-independent classes in the GUI with their
counterparts in native GUI. Some methods defined by Toolkit query the native operating system directly.

Structure:
Specialization_Of: Information Presenter

Attributes:

Methods: beep()
Emits an audio beep.

checkImage(Image, int, int, ImageObserver)
Indicates the construction status of a specified image that is being prepared for display.

createButton(Button)
Creates this toolkit's implementation of Button using the specified peer interface.

createCanvas(Canvas)
Creates this toolkit's implementation of Canvas using the specified peer interface.

createCheckbox(Checkbox)
Creates this toolkit's implementation of Checkbox using the specified peer interface.

createCheckboxMenuItem(CheckboxMenuItem)
Creates this toolkit's implementation of CheckboxMenuItem using the specified peer
interface.

createChoice(Choice)
Creates this toolkit's implementation of Choice using the specified peer interface.

createComponent(Component)
Creates a peer for a component or container.

createDialog(Dialog)
Creates this toolkit's implementation of Dialog using the specified peer interface.

createFileDialog(FileDialog)
Creates this toolkit's implementation of FileDialog using the specified peer interface.

createFrame(Frame)
Creates this toolkit's implementation of Frame using the specified peer interface.

createImage(byte[])
Creates an image which decodes the image stored in the specified byte array.

createImage(byte[], int, int)
Creates an image which decodes the image stored in the specified byte array, and at the
specified offset and length.

Volume IV Technical Reference Architecture 84

createImage(ImageProducer)
Creates an image with the specified image producer.

createLabel(Label)
Creates this toolkit's implementation of Label using the specified peer interface.

createList(List)
Creates this toolkit's implementation of List using the specified peer interface.

createMenu(Menu)
Creates this toolkit's implementation of Menu using the specified peer interface.

createMenuBar(MenuBar)
Creates this toolkit's implementation of MenuBar using the specified peer interface.

createMenuItem(MenuItem)
Creates this toolkit's implementation of MenuItem using the specified peer interface.

createPanel(Panel)
Creates this toolkit's implementation of Panel using the specified peer interface.

createPopupMenu(PopupMenu)
Creates this toolkit's implementation of PopupMenu using the specified peer interface.

createScrollbar(Scrollbar)
Creates this toolkit's implementation of Scrollbar using the specified peer interface.

createScrollPane(ScrollPane)
Creates this toolkit's implementation of ScrollPane using the specified peer interface.

createTextArea(TextArea)
Creates this toolkit's implementation of TextArea using the specified peer interface.

createTextField(TextField)
Creates this toolkit's implementation of TextField using the specified peer interface.

createWindow(Window)
Creates this toolkit's implementation of Window using the specified peer interface.

getColorModel()
Determines the color model of this toolkit's screen.

getDefaultToolkit()
Gets the default toolkit.

getFontList()
Returns the names of the available fonts in this toolkit.

getFontMetrics(Font)
Gets the screen metrics of the font.

getFontPeer(String, int)
Creates this toolkit's implementation of Font using the specified peer interface.

getImage(String)
Returns an image which gets pixel data from the specified file.

getImage(URL)
Returns an image which gets pixel data from the specified URL.

getMenuShortcutKeyMask()
Determines which modifier key is the appropriate accelerator key for menu shortcuts.

getNativeContainer(Component)
Give native peers the ability to query the native container given a native component.

getPrintJob(Frame, String, Properties)
Gets a PrintJob object which is the result of initiating a print operation on the toolkit's
platform.

getProperty(String, String)
Gets a property with the specified key and default.

getScreenResolution()
Returns the screen resolution in dots-per-inch.

getScreenSize()
Gets the size of the screen.

getSystemClipboard()

Volume IV Technical Reference Architecture 85

Gets an instance of the system clipboard which interfaces with clipboard facilities
provided by the native platform.

getSystemEventQueue()
Get the application's or applet's EventQueue instance.

getSystemEventQueueImpl()
loadSystemColors(int[])

Fills in the integer array that is supplied as an argument with the current system color
values.

prepareImage(Image, int, int, ImageObserver)
Prepares an image for rendering.

sync()
Synchronizes this toolkit's graphics state.

3.4.24 Class Name: Video

Description: The abstract class Video is the superclass of all classes that represent video streams. The video must be
obtained in a platform-specific manner.

Structure:
Specialization_Of: Information Presenter

Attributes: SCALE_AREA_AVERAGING
Use the Area Averaging video scaling algorithm.

SCALE_DEFAULT
Use the default video -scaling algorithm.

SCALE_FAST
Choose an video -scaling algorithm that gives higher priority to scaling speed than
smoothness of the scaled video.

SCALE_REPLICATE
Use the video scaling algorithm embodied in the ReplicateScaleFilter class.

SCALE_SMOOTH
Choose an video -scaling algorithm that gives higher priority to video smoothness than
scaling speed.

UndefinedProperty
The UndefinedProperty object should be returned whenever a property which was not
defined for a particular video is fetched.

Methods: flush()
Flushes all resources being used by this video object.

getGraphics()
Creates a graphics context for drawing to an off-screen video.

getHeight(ImageObserver)
Determines the height of the video.

getProperty(String, ImageObserver)
Gets a property of this video by name.

getScaledInstance(int, int, int)
Creates a scaled version of this video.

getSource()
Gets the object that produces the pixels for the video.

getWidth(ImageObserver)
Determines the width of the video.

Volume IV Technical Reference Architecture 86

3.5 Example Application of the Information Presenter Class Hierarchy

3.5.1 Introduction

This example presents a high-level application of the IPC hierarchy. Specifically, one instance of the
General Range Intelligent Display System (GRIDS) is mapped to the IPC. The mapping presented is
not unique or exhaustive. The flexibility of the IPC permits and supports many variants of such
mappings.

3.5.2 Basic Assumptions

GRIDS defines a display screen as the whole screen area (i.e., viewable area) of a graphics CRT. The
display screen is logically broken into two areas: The standard viewport and the graphics page (Figure
25).

The standard viewport is a system defined area of the display screen that displays general use
information about the system and the functional capabilities that can be executed. The standard
viewport is logically subdivided into the standard status structure display and the standard menu
structure. The standard menu structure displays the selectable and executable functions that can be
used to modify or change the displays seen on the graphics page (Figure 26).

The graphics page is a user defined area of the display screen that displays the real-time data. The
graphics page is logically divided into graphics structures, which are logically divided into graphics
components (Figure 27).

G R I D S D i s p l a y S c r e e n

G r a p h i c s P a g e S t a n d a r d V i e w p o r t

Volume IV Technical Reference Architecture 87

Figure 25. Grids Display Screen (1)

G R IDS Display Screen

Standard Viewport

GMT: 10:22:45 Date: 826
OPNAME: OP145
Workstation: Oracle

Communication: HS
Current Page: meter_page
Current View: Battery_meter

Page select

View select

Streams on
Streams off
Boundary value

Update rate

Graduation marks

Scale factor

Quit

Standard
Status
Structure

Standard
M enu
Structure

Standard
Status
Structure
Component

Standard
M enu
Structure
Component

Figure 26. GRIDS Display Screen (2)

Upper Current Limit Exceeded

-1

1

3

5

-10 -5 0 5 10 15 20 25

Output Current (ma)

G R IDS Disp lay Sc reen

Graphics Page
Graphics
Viewport

Graphics
Structure

Graphics
C o m p o n e n t

Volume IV Technical Reference Architecture 88

Figure 27. GRIDS Display Screen (3)

Volume IV Technical Reference Architecture 89

3.5.3 Example

The example GRIDS display to be mapped onto the IPC is shown in Figure 28. The display contains
many of the GRIDS components identified in Figures 25-27. The mapping will be constrained by the
IPC sub-hierarchy (or specialization) given in Figure 29. Finally, Figures 25-27 relate specific GRIDS
components to corresponding IPC components.

GRIDS/Info. Presenter Relationship

GMT: 10:22:45 Date: 826
OPNAME: OP145
Workstation: Oracle

Communication: HS
Current Page: meter_page
Current View: Battery_meter

Page select

View select

Streams on
Streams off
Boundary value

Update rate

Graduation marks

Scale factor

Quit

U p p e r C u r r e n t L i m i t E x c e e d e d

- 1

1

3

5

- 1 0 - 5 0 5 1 0 1 5 2 0 2 5

O u t p u t C u r r e n t (m a)

S H O O T E R A L T I T U D E v s T I M E

0
5 0 0 0

1 0 0 0 0
1 5 0 0 0
2 0 0 0 0
2 5 0 0 0
3 0 0 0 0
3 5 0 0 0

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8

T i m e (s e c o n d s)

A
lt

it
u

d
e

(f
t.

)

F l i g h t P a t h

+

Figure 28. GRIDS/Info. Presenter Relationship (1)

Volume IV Technical Reference Architecture 90

Info. Presenter Example

GRIDS_IP

Frame

Canvas

{Info. Presenter Hierarchy (IPH)}

{GRIDS IPH Specialization}

PanelLayoutManager

1
1

0
n

0
1

VideoImageGraphics

0
n

0
n

0
n

Label TextField

0
n

0
n

Button

0
n

Figure 29. Info. Presenter Example

GRIDS/Info. Presenter Relationship

GMT: 10:22:45 Date: 826

OPNAME: OP145
Workstation: Oracle

Communication: HS

Current Page: meter_page

Current View: Battery_meter

Page select

View select

Streams on

Streams off

Boundary value

Update rate

Graduation marks

Scale factor

Quit

U p p e r C u r r e n t L i m i t E x c e e d e d

- 1

1

3

5

- 1 0 - 5 0 5 1 0 1 5 2 0 2 5

O u t p u t C u r r e n t (m a)

S H O O T E R A L T I T U D E v s T I M E

0
5 0 0 0

1 0 0 0 0
1 5 0 0 0
2 0 0 0 0
2 5 0 0 0
3 0 0 0 0
3 5 0 0 0

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8

T i m e (s e c o n d s)

A
lt

it
u

d
e

(f
t.

)

F l i g h t P a t h

+

GRIDS_IP (governed by LayoutManager)

Figure 30. GRIDS/Info. Presenter Relationship (1)

Volume IV Technical Reference Architecture 91

G R IDS/Info. Presenter Relationship

Page select

View select

Streams on

Streams off

Boundary value

Update rate

Graduation marks

Scale factor

Quit

+

Image

Canvas

Canvas
Canvas

Canvas

Panel

Button

Figure 31. GRIDS/Info. Presenter Relationship (2)

GRIDS/Info. Presenter Relationship

GMT: 10:22:45 Date: 826
OPNAME: OP145
Workstation: Oracle
Communication: HS
Current Page: meter_page
Current View: Battery_meter

U p p e r C u r r e n t L i m i t E x c e e d e d

- 1

1

3

5

- 1 0 - 5 0 5 1 0 1 5 2 0 2 5

O u t p u t C u r r e n t (m a)

S H O O T E R A L T I T U D E v s T I M E

0
5 0 0 0

1 0 0 0 0
1 5 0 0 0
2 0 0 0 0
2 5 0 0 0
3 0 0 0 0
3 5 0 0 0

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8

T i m e (s e c o n d s)

A
lt

it
u

d
e

(f
t.

)

F l i g h t P a t h

Panel

TextField
LabelGraphics

Video

Graphics

Figure 32. GRIDS/Info. Presenter Relationship (3)

Volume IV Technical Reference Architecture 92

4.0 TENA Core

4.1 Introduction

At the most abstract level, the invariant part of every instance of the Logical Range can be considered
to consist of the system infrastructure services and mandatory system applications. This invariant base
is called the TENA Core. It is represented graphically in Figure 33. One of the most important aspects
of the TENA Core is that it is standard across all instances of the Logical Range, with one minor
exception: some portions of the standard mandatory applications may be customized to suit particular
range or facility circumstances when necessary. This is the only portion of the TENA Core that is
considered “site-specific” with the remainder being entirely invariant. This site-specific portion of the
otherwise invariant mandatory applications will be fully specified prior to implementation so that a clear
distinction is made between the TENA Core invariant sections and the sections that can be customized.

User Applications

TENA Core

Mandatory Applications

Infrastructure Services :
Distribution, Message,Connection,

Clock, Infrastructure Support Objects

Invariant
Code

Asset
Management Execution Initialization Network

Site
Specific

Code

Figure 33. TENA Core

Customization that accommodates site uniqueness will not interfere with or alter the standardization of
the interfaces or functioning of these mandatory applications. It will enable sites to tailor applications
for unique site configurations (hardware-specific), procedures (site-specific operational requirements),
and practices (site-specific logs and record-keeping).

4.2 Purpose of the TENA Core

The purpose of the TENA Core is to provide a means for exercise participants to communicate with
each other and to provide mechanisms for the management of the coordinated operation of an instance
of the logical range. All exercise processes and business aspects of facility operations are integrated
through capabilities provided by the TENA Core. The TENA Core provides the means for logical
range components to interoperate while maintaining a level of isolation among them, limiting

Volume IV Technical Reference Architecture 93

knowledge of the details of where other components reside, how to communicate with them, and the
details of their implementation.

The TENA Core manages the overall system operation and integrates the various elements available in
the TENA object model. It provides services that are general in nature and distributed across the entire
system.

Figure 9 is a conceptual model of the TENA Core. A more detailed model would show that there are
numerous instances of the TENA Core distributed about the facilities. Each TENA Core is a collection
of distributed services that coordinate their activities as required. This coordination is effected via the
normal data communications mechanisms that the TENA Core provides to any service requester. The
diagram shown below depicts a single instance of the TENA Core showing some of the internal
structures and interfaces.

Initialization
Dataset
Catalog

Local
Initialization

Datasets

Initialization
Manager

Infrastructure
Support
Objects

Clock
Services

Execution
Manager

Asset
Manager

Distribution
Services

Connection
Services

Message
Services

Local
Asset

Schedule

Master
Range
Asset

Catalog

Local
Asset

Catalog

Exercise
Plan

Repository

Local
Native

OS

Protocol
Stack

Channel
Driver

Application
Asset

To all
TENA Core

elements
as needed

Figure 34. Conceptual Model of the TENA Core

4.3 Sample Facilities Functional Partitions

Figure 35 is a comprehensive but abstract view that depicts sample functional partitions identified for
the facility system. It situates these partitions within the system and provides a perspective on how the
facility system is related to other modeling and simulation systems (M&S) as well as to systems foreign
to either the facility or M&S domains. A special type of surrogate, the TENA Bridge, illustrates the
integration of legacy facility systems with the TENA Core. This diagram does not imply a single user
interface or Human Computer Interface (HCI) application. Applications within functional partitions

Volume IV Technical Reference Architecture 94

are provided with user interfaces as appropriate. These interfaces are conceptually part of the HCI
partition.

Users/Operators

Human Computer Interface

Range
Management

Data
Presentation

Data
Acquisition

Data
Analysis

Data
Archiving Simulation Stimulator

TENA CORE HLA RTI
HLA RTI

Implementation

Surrogate TENA
Bridge

non-HLA
non-TENA
System

Legacy
Range
System

Sample
Range User
Applications

HLA Federate

Figure 35. Sample Functional Partitions

The identification of partitions within the applications area, that is, above the TENA Core, as shown, is
somewhat notional. This section of the document focuses on the Core of the system and defers
consideration of most of the functional details of the applications. The TENA Core is the basic glue
that integrates the system. It is intended to provide a set of powerful and open capabilities that
applications can use to coordinate their activities. A great deal of flexibility facilitates rapid
reconfiguration of asset sets for test conduct. It anticipates the need to change configurations,
representations, and test specific properties on short notice before and during test execution. It also
responds to the need to support integration of various application tools used before, during, and after a
test to satisfy business processes used by facilities. Later discussions will elaborate on these and
provide definition of what mechanisms, policies, and standards the architecture provides to manage
these capabilities.

The top-level view shown in Figure 35 consists of the following partitions:

Users/Operators:

Consists of the personnel who operate and use the facilities. Covers all phases from exercise planning
through after exercise analysis and reporting as well as O&M personnel. (see Object Model Personnel
class)

Volume IV Technical Reference Architecture 95

Human Computer Interface:

Consists of libraries and frameworks used to constitute parts of applications which communicate with
users and operators. Concerned primarily with display technologies and associated processing, e.g.
GUIs. (see Object Model Information Presenter class)

Facility Management:

Consists of several applications which are used to define and plan exercises, configure logical facilities,
manage inventories, perform billing and cost recovery, generate usage reports, monitor maintenance,
manage schedules, produce cost estimates, search and match facility requirements to facility capabilities
and assets, etc. Most of the business process activities and assets would be contained within this
partition. Those areas would include exercise and test management and control, as well as the facility
management applications indicated.(see Object Model Logical Range Planning Tool class and others)

Data Acquisition:

Includes all aspects of sensing and preliminary processing of data on the facilities. Includes all sensors
and telemetry systems and devices. (see Object Model Sensor class)

Data Analysis:

Applications used to perform various analyses on datasets collected on the facilities. (see Object Model
Analyzer class)

Data Presentation:

Performs processing and provides devices used for the display of data to users during any phase of an
exercise and after completion of the exercise. Provides capabilities to debrief exercise participants,
conduct after-action reviews, and generate reports for customer use. These applications and equipment
handle all of the processing behind the scenes of the HCI. (see Object Model Information Presenter
class)

Data Archiving:

Applications handle all storage and retrieval of datasets produced by or in association with facility
exercises or otherwise used by facility assets. (see Object Model , various class methods)

Simulations:

Modeling applications used to provide synthetic battlespace elements for interaction with other facility
assets. (see Object Model Primary Resource class)

Volume IV Technical Reference Architecture 96

TENA Core:

Fundamental component of architecture used to provide system wide or common services and
mandatory applications that integrate the systems and assets on facilities into a cooperative enterprise
for the purpose of satisfying particular intended purposes. The TENA Core encapsulates all operating
systems, utilities, communications protocols, communications and coordination facilities, etc. which
provide the environment in which applications execute and coordinate their activities.

HLA Run Time Infrastructure:

Those elements of the HLA RTI needed for interaction with federations of modeling and simulation
systems. The relationship of TENA to the HLA is discussed in more detail below.

Surrogate:

A stand in for systems which are neither TENA compliant nor HLA compliant but with which facility
assets must interact. The surrogate is an interface between different architectures.

TENA Bridge:

Legacy systems that comprise current facility assets would probably all integrate with the Facility
System via a TENA Bridge. This wrapper technology can be implemented in a number of ways. This
might range from a stand-alone bridge unit to a set of translation/interface services integrated with
legacy code. Various considerations including costs to modify existing systems will drive the choice.
It is anticipated that at the start of the transition to the TENA range facilities would primarily consist of
existing assets that are bridged to a copy of the TENA core. The TENA core instances will connect
with each other via appropriate networks to integrate dispersed legacy resources.

4.4 TENA and the HLA

One of the goals of the TENA is to allow Test and Evaluation and Training facilities to interoperate
with M&S facilities. The primary means of achieving this is through the High Level Architecture. The
first approach taken here was to develop the facility system as a federate, from the perspective of the
HLA. The facility system then federates with M&S systems supporting the relevant federation object
models. However, on closer analysis it is apparent that some of the functionality that is required for the
TENA Software Infrastructure, specifically that involved in moving data of interest between
participants, could be satisfied by an HLA run time infrastructure implementation.

A suitable RTI implementation can be embedded within the TENA Core to allow interoperation with
M&S systems either directly, when the RTI implementations are compatible, or through a bridge
federate, when the RTI implementations are not compatible, different time management strategies are
in use, or security considerations require it. The details of this are significant at the implementation
level and are not discussed further in this document.

Volume IV Technical Reference Architecture 97

The Information Class Catalog contains all of the information about the data exchanged by participants
either with themselves or with other federates in an HLA federation. In the case where the facility
system is bridged to a federation then an approach is to describe that facility system as a federate with a
Simulation Object Model describing its capabilities. The Simulation Object Model which characterizes
the facility system federate can be extracted directly from this catalog. If the facility system is viewed
as a federation itself then the Federation Object Model for this federation may also be extracted directly
from the Information Class Catalog as well as the Simulation Object Models for the participating
federates.

4.5 Description of theTENA Core

4.5.1 Introduction

The TENA Core is composed of Information Management Services and mandatory applications that
are standard across all instances of the TENA facilities. The Information Management Services are:

n Distribution Services

n Message Services

n Connection Services

n Clock Services

n Infrastructure Support Objects

The required or mandatory applications are:

n Network Manager

n Asset Manager

n Execution Manager

n Initialization Manager

The first three service groups, Distribution, Message, and Connection Services, are responsible for the
object based subscription service which provides for information movement within the system, both
data and control. Distribution Services provides the only procedural interface within the infrastructure
services which applications have access to. Access to all other assets including all other services of the
infrastructure is via this object based subscription service.

The remaining two groups, Clock Services and Infrastructure Support Objects provide capabilities for
coordinating time on the logical range and internal functioning of the infrastructure.

The four required applications, the Asset Manager, the Execution Manager, the Initialization Manager,
and the Network Manager, are responsible for supporting the planning, scheduling, and execution of

Volume IV Technical Reference Architecture 98

tests/exercises on instances of the logical range, managing any required initialization data, and
managing communications resources.

It should be noted that there is a collection of tradeoffs (advantages, disadvantages) that were
considered when determining whether a required capability of TENA should be defined as an
infrastructure service or as a required application that complements and completes the services. This
current partitioning does not mean that some of the required applications could not be incorporated as
a service of the infrastructure, only that it does not seem mandatory. Several of the capabilities
currently defined as applications were originally envisioned as infrastructure services, and may return to
that category as more detailed information becomes available through future verification, validation,
prototyping, and testing of TENA.

 4.5.2 Information Management Services

 4.5.2.1 System Information Model

This section provides a high level view of the basis for how the system coordinates activities. It refers
to various TENA Core services and applications that are described in more detail in the following
sections. The information model used to describe all information movement within the system,
whether data or control, is an object based subscription service. All information exchanged within the
system is described in terms of classes and their attributes. Sources of data advertise the availability of
this data by issuing a Publish service call that establishes the ability to produce information as described.
The Publish service requires the publisher to identify the class of information and the particular
attributes defined for the class that it is offering. The attributes announced must be defined in the
Information Class Catalog and can include any attribute or set of attributes defined in the catalog for
the indicated class but does not have to include all attributes listed for that class.

Users who require information that is described in the Information Class Catalog announce this desire
to the infrastructure by executing a Subscribe service call. The subscriber describes the class and the
particular attributes of that class which are desired. The infrastructure uses the information from the
Publish and Subscribe service invocations to manage the distribution of information within the system.

4.5.2.1.1 Information Classes

As indicated, the information class is the basis for describing data exchanged within the system. Except
for the interface between Distribution Services and other system elements all of the interfaces captured
in class definitions are implemented via the subscription service with Distribution Services orchestrating
the physical movement of the data. Interfaces that are depicted in this document are usually logical
interfaces that describe the information exchanged between system elements, the exception being
interfaces with Distribution Services. In most cases, for the sake of clarity the involvement of
Distribution Services in the exchange and its procedural interfaces are omitted from the interface
diagrams. The Information Class Catalog (ICC) can be thought of as the information model of a
system. All of the information that is contained in the various system interfaces is described within this
catalog along with indications of how the data is intended to be used and what data is required to be
produced by assets. It also identifies information, mostly events, to which assets are required to
subscribe. In this latter case the asset is required to respond to the information in a meaningful way.

Volume IV Technical Reference Architecture 99

This is primarily intended for event classes, described below, used to send advisories, requests, or
commands to system components.

The Information Class Catalog (ICC) can be thought of as the information model of the system. All of
the information that is exchanged by assets is described within this catalog. Information is included with
the class definitions that describes how the class and its attributes is intended to be used along with
constraints on its use. Many of the classes defined describe system events, which are sporadic
communications, that assets are required to subscribe to. These are used to carry control information,
i.e. commands, as well as requests and advisories.

The service descriptions provided in Appendix C of this document list the details of the interface
parameters, exceptions, etc. The ICC provides, in essence, the implementation level details for all of
these interfaces except those of Distribution Services. The implementation details for Distribution
Services interfaces, which are procedural interfaces, are provided in the Application Program Interface
(API) in Appendix D. The ICC contains descriptions of classes that are defined by infrastructure
designers as well as by application designers. It is meant to be a living database that contains
information used directly by implementations during run-time as well as information of interest to users
indicating how the classes are to be employed and some restrictions on their use.

The classes defined in the Information Class Catalog fall into one of two categories depending on their
use. They may be considered as static classes, that is, classes for which attribute values are, in general,
provided repeatedly and where the expectation is that the underlying object that the information models
or is persistent. For this use of an information class the publisher announces the intent to provide data
for specific class instances by invoking the RegisterInstance service for each class instance. The
parameter returned by this service is a system unique instance identifier that is used to unambiguously
reference the class instance throughout the system. Attribute values are provided by the publisher via
the Update service. An update can include values for any attribute that has been announced as being
published but need not include values for all attributes. Essentially attributes are independent in terms
of the time or condition of update of their values except where specific agreements have been reached
about the bundling of attribute values (described in the ICC). Unpublishing the class requires that any
instances registered first be removed. If the Unpublish service is invoked while class instances are still
registered an exception will be thrown and the publisher will be required to explicitly remove these
instances.

The second category of use of a class is as an event. For this type of class the publisher provides
attribute values by using the SendEvent service. This is assumed to be a transient instantiation of the
class that lasts until the event has been delivered to subscribers. The publisher does not register an
instance for the class in this case and attribute values are entrained in the event delivery rather than
provided via an update. Attributes can only be included if they have been identified as being published
by the publisher of the event. This class is intended to be used to provide a means to define and use
transient phenomena that occur at unpredictable times. Many of the control mechanisms, e.g.,
commands, in the system are implemented using this method.

Components that require a particular class of information make this known to the infrastructure via the
Subscribe service. The subscriber provides the class identifier and a list of the class attributes in which
it is interested. The infrastructure uses this information to manage the distribution of data within the

Volume IV Technical Reference Architecture 100

system. The instance identifier of the instance is provided as a parameter of this service so that the
subscribers can identify the attribute values that are provided for the instance in an update. A
RemoveInstance service is provided to delete registered instances when they become irrelevant or fall
out of scope.

 4.5.2.1.2 Information Channels

The establishment of an interested pair, a publisher and a subscriber, defines an information channel in
the system. Each publisher-subscriber pair defines a unique virtual channel whose contents are
determined by the subscriber’s attribute list. There is no a priori limit on the number of information
channels that may exist for any class, and each of the channels will contain at least one attribute. The
information channel is created when the matching of the publisher and subscriber first occurs and the
channel persists until one of the pair divests its interest in the information exchange. These channels are
virtual information links; they describe a shared interest but must be mapped to a physical channel for
information to be moved.

The direct interface between applications assets and the infrastructure is between the asset and
Distribution Services. This is a procedural interface with the asset directly invoking methods exported
by Distribution Services and Distribution Services directly calling functions the asset has provided
callback addresses for. The system procedural interfaces are shown in Figure 36.

Application
Asset

Connection
Services

Message
Services

Distribution
Services

System Procedural Interfaces

TENA Core
Application

Figure 36 System Procedural Interfaces

All other application asset to infrastructure interfaces are message based interfaces with no direct
procedural connection. Distribution Services assumes responsibility for distributing this information.
Interfaces between TENA Core components that are local to the same infrastructure as well as

Volume IV Technical Reference Architecture 101

interfaces between components of separate infrastructure instances use Distribution Services to manage
the data transfer, as for other system information transfers. These interfaces, including those which
involve infrastructure services other than Distribution Services, are mechanized via information classes.
Infrastructure services captured in information classes consist primarily of event classes and are
managed like transactions.

 4.5.2.1.3 Transactions

A number of the interactions between elements of the system, particularly those that involve TENA
Core elements can be described as transactions. A transaction consists of one or more events that are
coupled together to provide a complete and atomic service. The carriers of these transactions are
events, or instances of event classes, which are dispatched and received in response to higher level
functional requirements. Many of the services provided by the infrastructure will involve requesters
with infrastructure elements as actors engaging in a transaction. For example, many services involve a
request or command followed by some response. For purposes of the TENA these interactions are
considered transactions. As described in this document, the events are dispatched using the SendEvent
service provided by Distribution Services. Most of the services provided by the TENA Core are
realized by defining one or more event classes with attributes, described as parameters in the service
descriptions, and placing them in the Information Class Catalog.

The implementation of TENA Core components will provide a means of ensuring that transactions
either complete, in which case state variables are modified in consequence, or they fail, in which case
there are no permanent changes to state variables made. Sometimes the commit can be inferred from
the completion of actions and sometimes an actual commit event is required. The ICC describes any
coupling of events into transactions and requirements for committing a transaction.

4.5.2.1.4 Mapping to Communications Channels

For information to be transmitted within the system it is necessary for each information channel to be
mapped to a communications channel. A communications channel is a physical conduit for movement
of data. It involves specific hardware (including circuits, gateways, network interfaces, etc.) and,
usually, software that transmits data from one location to another. A particular communications
channel may involve the creation of logical channels that share communications resources.

The publisher of a class indicates the level of communications support it requires by providing quality
of service parameters that the infrastructure uses to determine the actual communications channel
required. The information channels established for the class published are then mapped to the
communications channel for delivery. These parameters are used to convey communications
requirements from general purpose, shared channels through special purpose, dedicated channels.
Publishers and subscribers of information determine the specific communications channel used (when
known a priori) for delivery of the information, or specify the channel characteristics required.
Subscribers and publishers will need to coordinate their requirements and ensure that the Information
Class Catalog reflects the agreements on delivery of data. In cases where essentially the same
information needs to be delivered to multiple subscribers where it is not possible to use the same

Volume IV Technical Reference Architecture 102

quality of service on each information channel, publishers will define multiple classes that can be
published with different quality of service that satisfy the subscriber needs.

System architectures and implementations of TENA Core components may have multiple ways of
representing quality of service. At its simplest, a type designation could be assigned to each known
channel or channel type with publishers selecting which type they prefer. More sophisticated
approaches can express quality of service in terms of parameters, such as minimum bandwidth,
maximum latency, mean latency, error rate, reliability, etc. The TENA Enterprise must, however,
agree on a common set of representations that are supported throughout the enterprise. This is
necessary to enable components to be reused across system and facility boundaries. Differences in type
referents may reflect how tightly constrained a component is by its communications requirements. For
example a specification for a particular channel may indicate that only that channel is sufficient for its
needs whereas a specification for bandwidth, latency, reliability, etc. could be satisfied by a number of
different channels. A particular implementation or instance of the infrastructure may not be able to
recognize or act on all quality of service parameters. All implementations will be designed to respond
to unrecognized and unsupported parameters by issuing exceptions and providing default parameters
for communications channels involved. Infrastructure instances may not have access to
communications assets supporting a particular quality or mix of qualities. They will respond by
throwing an exception and resorting to default parameters for the effected communications channels.

A requested quality of service may not always be available. Users may have to decide whether a
compromise between desired and available service is possible. Infrastructure implementations may
choose to attempt a best match between available resources and the requested quality but will probably
always rely, to some extent, on a user’s decision about the suitability of a communications channel for a
particular use.

 4.5.2.1.5 Physical Channels and Circuits.

Physical channels are implemented using communications circuits. These range from simple cables
connecting two points to facilities provided by common carriers. Where multiplexing is supported
multiple physical channels may be mapped to an individual circuit.

The fundamental physical building block for interconnecting assets is the circuit. This includes the
physical medium plus protocols for signaling, access control, error management, etc. These circuits are
divided into two use categories based on their visibility in the system. Private circuits are those that
directly connect two assets. There is no infrastructure component located in or attached to the circuit
and there is no requirement for using infrastructure services to move data through the channel.
Consequently, any functionality that is provided by infrastructure components or the underlying
platform is not available. This means that any conventions for moving information in the circuit or
requirements for formatting of data are the responsibility of the assets that are connected to the circuit.
The test plan, or a suitable management application, indicates which assets are to be connected, the
identity of the circuit or required circuit characteristics, and how the collection is connected.
Allocation and configuration of circuits is the responsibility of the Network Manager. Connection
information, obtained from the Network Manager, is provided to the assets so that they know how to
access the low level hardware and driver software to use the circuit.

Volume IV Technical Reference Architecture 103

Public circuits are circuits that can be used by one or more pairs of communicating assets. These
circuits are connected through Distribution Services and make use of either Message Services or
Connection Services for low level management of circuit access. Users issue Publish or Subscribe
service invocations to announce to Distribution Services their need for a particular kind of circuit via
the quality of service parameters. Information channels are mapped to the circuits based upon the
various publications and subscriptions and information is moved through the circuits via infrastructure
services. These public circuits may be either dedicated or shared.

Dedicated public circuits are intended to be used for special application needs and are managed via
Connection Services. The circuits are defined either in the test plan or via user direction through an
appropriate application asset. The Network Manager asset is responsible for creating or allocating
these circuits, configuring them as directed, and connecting them to indicated hardware ports. The
connection information required to access the channels is provided by the Network Manager. Assets
indicate via quality of service parameters which protocol sets, if any, are to be utilized to encapsulate
access to the circuits. At its most primitive, channels may be accessed directly through interface
hardware.

Shared public circuits are based on using the communications capabilities provided by the underlying
platform using well known network technologies and protocol sets. Low level management of these
circuits is via Message Services and they are accessible to any asset on an as needed basis. There are
no restrictions on the number of users, pattern of use, or loading beyond that imposed by circuit
capacity and system requirements. Distribution Services is used for managing all communications to
these circuits from applications and infrastructure components. These circuits are normally set up prior
to powering on platforms, are permanently configured into the system, and are available after the
platforms operating system is booted up. They are directly supported by the operating system kernel.

 4.5.2.1.6 Filtering

For a variety of reasons a specific subscriber to a class may need to control the information delivered to
it. The means to do this are provided by filters installed within an information channel. In general,
subscribers activate one or more filters as required to limit data flowing within the channel. They do
this by using the ActivateFilter service and provide filter parameters that identify the type of filter and
the value for the specific parameters required by the filter type. There is no inherent limitation on the
number or type of filters that may be defined or used within any channel. However, some filter types
may be meaningless for a particular information channel.

It is expected that filters will be used to control the amount of data flowing within a channel to reduce
resources required by components and manage loading of communications circuits. They may also be
used to match components operating at different cyclic rates, interface synchronous and asynchronous
components, and simplify the design of components by providing commonly used data filtering
techniques within the infrastructure.

There are no limitations on when filters may be activated and deactivated. The value of filter
parameters can also be modified to change the filter characteristics at any time. The presence of filters
and the value of parameters have no effect on the distribution of information about the existence of
class instances.

Volume IV Technical Reference Architecture 104

Filters that are established within information channels perform no transformations on information
flowing through the channel. They merely gate the information depending on whether the passing
criteria are met or not. Users will decide if filtering is appropriate in an information channel. Some
data streams cannot be altered in any way, even by simple traffic control. The gating criteria are
identified by the parameters supplied during the filter installation. Based on the type of filter selected,
certain information class attributes are identified as being mapped to dimensions of the filter space.
Values for the minimal and maximal values of the dimension variable that define the mapping of the
filter gate to the particular dimension are also provided. The dimensions provided define a space of 1
or more dimensions.

In general, the information that passes through the channel need not have any connection to the
attributes mapped to filter space dimensions. In determining the passage of information the filter
operates on the latest values of the dimensional variables that are available to it. If the dimensional
variables are mapped from the attributes of an instance generated by the publisher then the latest values
are available immediately from the local source. If the attributes are generated by an instance not
locally available the infrastructure instance that executes the filter will subscribe for the required class
and attributes and obtain the latest values through the normal update service.

 4.5.2.1.7 Mandatory and Default Publishing and Subscribing

The current concept for communications between TENA Core elements located in different
infrastructure instances, between applications assets, and between applications assets and TENA Core
elements is to route those communications through Distribution Services. As a consequence of this
and for additional reasons there is a body of information classes that will be defined and used for
publication and subscription purposes by all components that are capable of accessing an instance of
the infrastructure. Each type of component will have to publish and subscribe some subset of these
classes as a default set of information class interests.

These classes will carry the requests and responses for infrastructure services as well as required
management information to be used for facility management and performance monitoring. Other
classes will provide events that can be used for control of assets. Facility management applications and
infrastructure services will make use of these events as appropriate to control the operation of the
system’s assets. All assets that are capable will publish information on their status for use in
determining the state of assets. All of the mandatory publishing and subscribing requirements are
described in the Information Class Catalog.

Facilities will, from time to time, define assets that will be used for test purposes to diagnose problems
with facility assets or assess their operational readiness. These test assets will publish and subscribe
information as defined by maintainers to provide information flow for stimulating test instruments.

 4.5.2.2 Distribution Services:

 4.5.2.2.1 Description

Volume IV Technical Reference Architecture 105

Manages the distribution of data between facility assets and infrastructure components. This service
makes use of message services and connection services as appropriate to distribute the data between
assets, and uses event classes to distribute information between infrastructure components. This
component provides a subscription oriented service for data based on classes and class attributes. Data
transfers are supported with a variety of Quality of Service factors (QOS) on both shared and
dedicated channels. Components instantiate the object classes they publish as required by their
operation. At some appropriate time they register these instances with the TENA core by a service call
to distribution services. Distribution services then advises all subscribers to the class of the existence of
the instances through the discover service. This is one of the services that invoke a callback in a system
asset.

 4.5.2.2.2 Assumptions

This system relies on an object-based concept. Distribution of data throughout the system is aligned
with this model of the system. System components establish classes that define the objects or instances
of the classes from which the system is constructed. In terms of data transfer, distribution services
expects that components requiring service provide definitions of classes of objects and classes of
events. These class definitions contain attributes that are the carriers of the state information that is
distributed within the system.

Instance of event classes (events) are created as required and dispatched into the system. There is no
registration or discovery associated with these class instances. They are considered discrete, self
contained, and non-persistent.

The minimum granularity to which distribution is managed is the attribute level. Components
announce their intent to produce data for general consumption by using the publish service. The class
and attributes are identified to the infrastructure as part of the service. Additional parameters are
provided to define conditions of delivery and certain data characteristics. Consumers of data identify
their needs by using the subscribe service, identifying the class and attributes desired and requirements
for rate of delivery, etc.

It should be noted that the Quality of Service requested by the publisher of data must be prearranged
with all planned subscribers since no mechanism is supported for modifying a particular QOS during
operations. Different QOS required by different subscribers will be supported by separate classes with
separate QOS being published. A failure of a link satisfying a QOS during an exercise may be
circumvented by subscribing to a backup QOS with a backup link.

Components are under no obligation to publish all of the information they contain. They announce
availability via a publish service for only those classes and attributes they wish to make available outside
the component. They can further specify access limitations on the data via parameters of the service.
These access limitations establish subsets of components that can access a particular class. Distribution
services enforces the access restrictions by checking a subscriber provided password against a publisher
provided password. This password is arrived at outside of the Infrastructure so it can not be requested
during an exercise. It must be established as a part of test scheduling when the all participants of an
exercise are involved. The password protected data is limited on a class basis.

Volume IV Technical Reference Architecture 106

 4.5.2.2.3 Rationale

Standardization of communication within the system is critical. A new data or communication
interface is accomplished by defining a Class and Attributes, then Publishing and Subscribing to them,
with no new software required.

All Infrastructure components and all facility assets will communicate through Distribution Services.

The intent of this concept is that Distribution Services is used by all system components and for
interfaces within the system. All facility assets that are not infrastructure assets accomplish all their
communications through distribution services with rare exception. Infrastructure components use
distribution services for all communications that travel between infrastructure instances. Because of
this reliance of all other services on Distribution Service, it must be the first infrastructure service
activated. It must also be self-initializing (i.e., no communication with Initialization Manager which is
not yet active).

 4.5.2.2.4 Services Provided

Distribution Service

Generate Asset Id

Publish

Unpublish

Register Instance

Discover Instance

Update

Send Event

Stop Updating

Register Channel

Unregister Channel

Resume Updating

Unregister Instance

Subscribe

Unsubscribe

Terminate Asset

Activate Filter

Modify Filter

Deactivate Filter

Request Update

Figure37. Distribution Service - Services Provided

Volume IV Technical Reference Architecture 107

4.5.2.2.4.1 Generate Asset ID

This service is used to generate a system unique identifier for an asset. This would be used prior to
adding an asset to the master asset catalog.

 4.5.2.2.4.2 Publish

 A service used to announce the intention or capability of providing information described by
parameters for use by system components. This is in effect a declaration that this particular class of
information is going to be available to all other components of the logical range. Those logical range
participants interested in receiving this information must subscribe to it. This is true of both static
classes (persistent and changing data) and event classes (non-persistent or discrete).

 4.5.2.2.4.3 Unpublish

Used by a system component to announce its intent to cease providing the information for the selected
class described by the parameters. All instances of the Class which were registered must first be
removed before executing this service.

 4.5.2.2.4.4 Register Instance

This service is used by a system component to announce the existence of an instance of some class that
it publishes. This establishes the intent to provide state data about this instance. A publish declares an
intention to provide data of a certain class. This service indicates that a particular instance of that class
is now available. Those components that have subscribed to this class will now begin receiving data for
this instance of that class.

 4.5.2.2.4.5 Discover Instance

This service is an infrastructure initiated service that is invoked for all subscribers to a class when an
instance of the class has been registered. This informs subscribers that a class of data they have
subscribed to now has data available for a particular instance of that class and they will now begin to
receive that data.

 4.5.2.2.4.6 Update

Used by publishers of information to provide values for the indicated attributes of the indicated Class
instance. Update services propagates the values provided to all components that have expressed a
desire to receive the information provided that the discovery criteria for the receiver has been met and
the information passes through any filters established in the delivery channel. [When a Class is
published, Distribution Service provides a Delivery Handle to the publisher to be associated with the
future Updates of the Class instance. Although the Delivery Handle is not passed as a parameter for
the Update service, it is used by the updating asset in directing or delivering the update in accordance
with the syntax of the programming language being used. The API for Distribution Service will
contain specific information on the use of the Delivery Handle. The use of the Delivery Handle permits

Volume IV Technical Reference Architecture 108

Distribution Services to set up entries to lower levels in the stack of infrastructure services to allow
lower latency updates over dedicated public channels through Connection Services.]

 4.5.2.2.4.7 Send Event

Used by a component to dispatch a discrete event into the system. The event will be propagated to all
indicated components that have expressed a desire to receive the event. When an event class has been
published and subscribed to, this service distributes the event to all subscribers.

 4.5.2.2.4.8 Stop Updating

This service is used to advise the publisher to cease updating a class that it is publishing. This occurs
when there are no subscribers to a particular class of data.

 4.5.2.2.4.9 Resume Updating

This service is used to notify the publisher of a class to resume updating. This indicates that there is at
least one subscriber to the class.

 4.5.2.2.4.10 Unregister Instance

This service is invoked to announce that an owner of a class instance will cease to provide information
about that instance. It is propagated to subscribers to a class to advise them that an instance of the
class has been removed from the system. This indicates that no more information about this instance
will be delivered.

 4.5.2.2.4.11 Subscribe

A service used by any component that wishes to announce a need for information described in the
parameters. Subscribers are notified of the registration of all class instances that meet the discovery
criteria specified in this service.

 4.5.2.2.4.12 Unsubscribe

Used by system components to remove themselves from the distribution lists for the specified
information.

 4.5.2.2.4.13 Activate Filter

The use of Publish and Subscribe services creates information channels within the system. Each pairing
of a publisher with a subscriber defines one of these logical channels. For many reasons related to
performance of communications networks, resource contention at devices with service network
connections, cost of network bandwidth, etc. there is a need to limit information transfer.

Volume IV Technical Reference Architecture 109

The establishing of interest groups via Publish and Subscribe is one form of limitation of transfer since
the services establish a minimal connection network among components. However, many cases require
additional filtering on information channels.

This service is used to activate a filter in an information channel to effect a desired degree of limitation.
It is the subscriber to data who activates a filter to protect itself from being overwhelmed by
information on the channel. There is no inherent limitation on the number or type of filters that may be
activated in a channel but implementations will probably constrain this variability.

 The filter can be thought of as a gate through which information is required to flow. Information that
fails to satisfy the gate’s criteria closes the gate. The location at which this filtering occurs is
determined by a parameter provided when the filter is activated. In general, filtering is performed most
effectively at the source of the information but may be activated at the destination if multiple
subscribers prohibits filtering at the source. This decision is made at test planning and is known when
the request to activate the filter is issued.

 4.5.2.2.4.14 Modify Filter

This service is used to change the value of one or more parameters to a filter that is activated in an
information channel.

 4.5.2.2.4.15 Deactivate Filter

This service is used by a component that has established an information filter in one of its information
channels to deactivate that filter. If there are multiple filters activated in a channel they must be
deactivated individually.

 4.5.2.2.4.16 Request Update

This service can be used by a system component that has subscribed to some information that is being
published by some other system component to query the publisher for the current value of the
information described by the parameters. This applies to static classes and not events. This request has
optional parameters that can be used to direct the request to a particular asset or apply to a specific
class instance. If no optional parameters are used the request is directed to all assets that are publishing
the class. For all instances the response to this query is satisfied by publishers issuing updates for the
indicated information. These updates are directed to the specific requesters.

 4.5.2.2.4.17 Register Channel

This service is used to identify the protocol and circuit that has been allocated as a dedicated public
circuit. This service is used to identify the actual circuit descriptor that is to be used in propagating the
updates for the published class.

 4.5.2.2.4.18 Unregister Channel

Volume IV Technical Reference Architecture 110

This service is used to indicate that the protocol and circuit that has previously been allocated as a
dedicated public circuit is no longer required. This service is used to identify the actual circuit
descriptor that is to be removed from the internal tables of Distribution Services.

 4.5.2.2.4.19 Terminate Asset

This service is used to clean up the tables maintained by Distribution service when an asset has been
placed out of service by a user command to Execution service. This is similar to the clean up that is
normally performed at the end of an exercise or when an asset removes itself from the exercise. In this
case the asset has failed and is not able to participate in the normal termination sequence.

 4.5.2.2.5 Interfaces:

Distribution
ServicesAsset

Connection
Services

Message
Services

Message Data

Method Address

Circuit Description

ConnectionID

Message Data

Method Address

ConnectionID

Message Data

Protocol

Message Data

Method Address

ClassD

InstanceID

AssetID

AttributeList

ClassD

AttributeList

AssetID

AttributeValueList

AttributeValueList

QualityOfService

GroupID

GroupPassword

Destination

InstanceID

FilterTypre

FilterParameterSet

TargetID

Figure 38. Distribution Service Interfaces

 4.5.2.3 Message Services

 4.5.2.3.1 Description:

Message services provides a form of communications based on a discrete, packetized data oriented
service for any purposes applicable within facility operations. It is expected that all communications for

Volume IV Technical Reference Architecture 111

discrete data streams which do not have exceptional latency or capacity requirements or which are not
restricted to specific dedicated channels for other purposes will be managed through message services.
It provides connections to one or more networks to support these services by making use of
communications facilities provided by the execution platform. Users of message services can select
among different networks and protocol sets to match provided capabilities and characteristics with
required quality of service. This service functions primarily to encapsulate the interfaces to the
network services present on the platform. It isolates users from the details of how protocols operate,
what system services must be used, and format and content of control data.

From the users perspective this service is a datagram service. However, the quality of service
negotiated may establish virtual circuits where required to ensure meeting guarantees for delivery,
restrictions on ordering, etc.

The basic strategy for sending messages is for the service requester to buffer the outgoing message and
provide parameter values to determine destination and distribution characteristics. The sender then
calls the send service. For incoming messages the service requester can poll for messages by using the
receive service, with appropriate parameter values. Implementations may also allow an interrupt driven
option that allows message services to call an entry provided by the service requester to deliver the
message. With an interrupt driven approach message services will not buffer messages for users.
Service requesters can switch between polled and interrupt driven service as required. However, when
switching from polled to interrupt driven the service requester is responsible for retrieving any
messages remaining on the incoming message queue when the switch is enacted.

 4.5.2.3.2 Assumptions

Users of Message Services understand the quality of service which can be guaranteed for each protocol
which Message Services provides access to. Users provide any mapping between requested quality of
service parameter values and protocols supported here.

 4.5.2.3.3 Rationale

The primary drivers for identifying the Message Services partition are separation of concern and
information hiding. Both of these are consequences of a need to limit the complexity of Distribution
Services by removing the need to deal with the details of how datagrams are sent and which platform
facilities to make use of in dispatching packetized data from Distribution Services. The requirement to
provide packetized network connectivity is allocated to Message Services to relieve Distribution
Services of those details.

In order to provide the capability to select different strategies for managing the servicing of incoming
message streams Message Services is provided with the ability to support both synchronous and
asynchronous message delivery on a protocol basis. Users (Distribution Services) can alternate
between the approaches as required to meet changing needs and better match overhead costs and
latency to user requirements.

Volume IV Technical Reference Architecture 112

 4.5.2.3.4 Services Provided:

Message
Services

Send

Receive CancelCallback

RegisterCallback

Figure 39. Message Service - Services Provided

 4.5.2.3.4.1 Send

A service used to send a message.

 4.5.2.3.4.2 Receive

A service used to extract the next message on the incoming message queue for the indicated protocol.

 4.5.2.3.4.3 Register Callback

This service is used to register a method for callback service when an incoming message is received. A
callback is registered for each protocol set that can be used to transfer messages. Invocation of this
service sets the retrieval mode for the protocol to interrupt driven. The mode defaults to polled when
the infrastructure is initialized and remains so until this service is invoked.

 4.5.2.3.4.4 Cancel Callback

This service is used to cancel a previously registered callback. It removes the callback method address
for the protocol indicated and marks the protocol as polled.

 4.5.2.3.5 Interfaces:

Volume IV Technical Reference Architecture 113

Distribution
Services

Message
Services Protocol

Data

Data

Control Parameters

Message Data

Message Data

Method Address

Protocol

Figure 40. Message Service Interfaces

 4.5.2.4 Connection Services

 4.5.2.4.1 Description:

Connection Services provides the system mechanisms for dynamically adding and removing
communications networks and protocols. The service supported here is similar to that provided by
Message Services for well-known platform supported communications networks but allows those
communications facilities to be added and removed from the system in response to the needs of specific
logical ranges and, further, allows the use of special purpose protocols which support peculiar
communications needs or afford improved quality of service tailored to test requirements.

Connection Services accepts requests to install communications connections into the system including
arranging requested protocols and connecting them into the data stream. The assembly of protocols
and connections is referenced by a communications channel number assigned by Connection Services
and the quality of service parameter value set that the connection supports. It advises Distribution
Services of the channel it supports along with the quality of service supported by the channel and a
method handle used for sending information so that Distribution Services can provide support to
publishers and subscribers.

Volume IV Technical Reference Architecture 114

 4.5.2.4.2 Assumptions:

Asset Manager has ascertained the accuracy and completeness of information about connections
attached to the operating platform.

 4.5.2.4.3 Rationale:

Connection Services was created in response to a need to simplify Distribution Services by removing
from it the need to deal with the specifics of how to connect up a communications channel. It was also
separated from Message Services to allow each service group to optimize their implementation for
either statically configured connections and protocols or dynamically configured connections and
protocols.

 4.5.2.4.4 Services Provided:

The connection services provide two distinct groups of services, network protocol messaging services
as are provided using message services and network connection management. The TENA relies on
network manager to provide facility specific network management.

Connection
Services

Send

Receive

RegisterCallback

CancelCallback

ResetConnection

RemoveConnection

InstallConnection

FlushConnection

Figure 41. Connection Service - Services Provided

 4.5.2.4.4.1 Send

A service used to send a message.

 4.5.2.4.4.2 Receive

Volume IV Technical Reference Architecture 115

A service used to extract the next message on the incoming message queue for the indicated
connection.

 4.5.2.4.4.3 Register Callback

This service is used to register a method for callback service when an incoming message is received. A
callback is registered for each connection which can be used to transfer messages. Invocation of this
service sets the retrieval mode for the connection to interrupt driven. The mode defaults to polled
when the infrastructure is initialized and remains so until this service is invoked.

 4.5.2.4.4.4 Cancel Callback

This service is used to cancel a previously registered callback. It removes the callback method address
for the connection indicated and marks the connection as polled.

 4.5.2.4.4.5 Install Connection

This service is used by infrastructure components to install a communications circuit that has been
attached to the operating platform. The Network Manager creates, acquires, or allocates a circuit and
attaches to an input/output channel on the local platform. Connection information supplied by the
Network Manager about this connection is provided to Connection Services to locate and characterize
the circuit.

 4.5.2.4.4.6 Remove Connection

This service removes a connection from the set of connections that are supported by Connection
Services.

 4.5.2.4.4.7 Reset Connection

This service is provided to enable the reinitialization of a connection and associated protocols to
recover from errors.

 4.5.2.4.4.8 Flush Connection

This service forces all data that has been queued within protocols associated with the connection,
within communications nodes, and within network interface units to be delivered to the connection end
point. Additional information will not be accepted until all connection data has been “flushed” from
buffers and stacks.

 4.5.2.4.5 Interfaces

Volume IV Technical Reference Architecture 116

Distribution
Services

Connection
Services

Message Data

Method Address

Circuit Description

ConnectionID

Message Data

Method Address

ConnectionID

Protocol
Data

Data

Control Parameters

I/O
Card

Data

Data

Control Parameters

Operating
System

Data

Data

Control Parameters

Figure 42. Connection Service Interfaces

 4.5.2.5 Clock Services

 4.5.2.5.1 Description

The Clock service group manages time issues for the facility. It performs synchronization and time
setting services as well as maintaining a global clock for exercises.

 4.5.2.5.2 Assumptions

The specification of this services group is based on the following assumptions:

n The infrastructure has a method for reliably maintaining an internal wall clock such as GPS.

n The Clock service group has subscribed and published to all event classes needed by Clock services.

n The variability in network latency times is sufficiently small that time service algorithms can be
calibrated to remove the network effects.

 4.5.2.5.3 Rationale

Volume IV Technical Reference Architecture 117

Synchronization of time is an important requirement for many TENA assets. Examples include radars
and other devices that time stamp data before it is sent to other assets. Without all assets having
synchronized clocks, data collected during a test or exercise can be useless.

 4.5.2.5.4 Services Provided:

Clock Services

SetCurrentTime

Sync

GetCurrentTime

Figure 43. Clock Service - Services Provided

 4.5.2.5.4.1 Get Current Time

This service is utilized to get the current value of date and time for the facility system global clock.
This is a single synchronized date and time that is shared by all facility instances. It is Zulu time.

 4.5.2.5.4.2 Set Current Time

This service is used by a facility management asset with sufficient authority to set the current value of
the date and time maintained for the facility system clock. For facilities with assets that use GPS to
maintain their clock, the Set Current Time will have no effect. Set Current time is used to set the time
for those assets without a GPS capability.

 4.5.2.5.4.3 Sync

This service is used to cause the infrastructure to propagate a date and time update message to other
infrastructure instances.

 4.5.2.5.5 Interfaces:

Volume IV Technical Reference Architecture 118

Clock
Services

Distribution
Services

Current Time

Current Time

Figure 44. Clock Service Interfaces

 4.5.2.6 Infrastructure Support Objects

The infrastructure component labeled Infrastructure Support Objects is intended to contain the
definition for and instances of classes of basic objects required for system functioning rather than
exercise execution. Many of the classes or objects which appear in the object model will appear as
implementations within this group. The set of basic type definitions and associated methods which are
required across the system are established here as well as definitions provided for more complex classes
which are needed widely or are fundamental to capabilities supported directly by the TENA core. It is
also likely that a number of basic utilities will be provided as part of this component for use across the
system.

 4.5.3 Mandatory Application Programs

A concern when designating a capability as an application is that it implies a certain freedom in the way
it will be implemented. This is not the case with the TENA required or mandatory applications.
Standardization of implementation is critical for Asset Manager, Execution Manager and Initialization
Managers. Network Manager may be implemented to conform to local site configurations and may
therefore vary in its implementation. In order to enforce this standardization of mandatory

Volume IV Technical Reference Architecture 119

applications, these applications have been included as part of the TENA Core and will be standard
across all instances of the Logical Range.

 4.5.3.1 Network Manager

 4.5.3.1.1 Description:

The Network Manager (NM) is a required application asset which is responsible for managing use of
networks and other communications facilities required for facility operations. It is charged with
managing the connection of network elements to form connections, it monitors network and
connection performance, and it provides network and connection status to the infrastructure and
TENA applications. The NM may be a single stand-alone asset or may be integrated into a larger
facility management application depending on requirements at each facility and implementers’
preference.

The NM is intended primarily to deal with the dynamic acquisition and return of communications
resources to satisfy individual exercise requirements. It manages network resources that are
permanently connected to facility assets and supported by the operating platforms they are attached to.
However, these permanent networks, which support information transfers managed by Message
Services, usually require little management. The bulk of activity is in dealing with circuits and networks
intended for dedicated public use managed by Connection Services and for private connections directly
connecting two specific assets.

The NM works closely with Asset Manager (AM) to create, acquire, or configure communications
resources in response to the definition of logical ranges or in response to unplanned user requirements.
The NM has information about the location of and characteristics of communications resources
available to a facility. In response to requests from AM to acquire a communications resource with a
specified quality of service (QOS) the NM will determine which resource known to it and available
most closely matches the QOS requirements. It then performs the necessary actions to acquire control
of the resource. This may involve requesting personnel to connect hardware, configure networks
through autonomous network control terminals, requesting and negotiating for common carrier
resources, etc. When the NM has determined the resource is available for use by the facility it reports
the status and actual QOS characteristics, along with the input/output channel connection point and
machine, to AM.

During operation the NM monitors all communications resources which it has available to it or knows
about and reports this status for use by other facility assets. It may also be augmented with the
capability to act to relieve congestion in circuits. AM may also request that a resource be released
when it is no longer required. The NM provides capabilities to accomplish this in a timely manner.

The resources managed by the NM are intended to satisfy all facility requirements and not just
computer data transfer. The NM may be required to provide and manage resources for the transport
of integrated voice, video, and data communications. It may further be required to provide for the
transport of raw, compressed and/or secure voice and video communications. The transport must
enable real-time reconstruction of the data by the receiving asset and meet network command/control
requirements.

Volume IV Technical Reference Architecture 120

The NM must be extensible and flexible so that it can quickly adapt to new communications
technologies as they become available and additional or changes requirements for supporting tests and
facility business operations.

 4.5.3.1.2 Rationale:

Processing power is doubling about every two years. LAN capacity development has not kept pace
with this increase in processing power resulting in fewer computers being attached to a LAN segment.
To meet the increased networking demands new families of LANs / WANs are evolving.

Networking protocols developed 10 or more years ago placed greater functionality within network
components to compensate for reliability and limitations in data links and to off-load end-point systems.
These new emerging transport technologies coupled with more reliable transport media have greatly
reduced the need for these embedded network services.

Facility communication requirements are viewed as critical design criteria. One of the design goals of
the TENA system architecture is to provide the data transport flexibility needed to maximize
communication performance and efficiency.

Modern facility systems require the integration of voice, video, and data. To meet these demands and
the continuing increase in network bandwidth requirements, emerging transport technologies are
greatly reducing the services provided by the network elements and moving them to the customer
premises equipment. The TENA infrastructure must support both the current generation of transport
services and the emerging networking systems support services. To replace this reduction of
operations, administration, and maintenance capabilities, the infrastructure and logical range support
applications provide greater support for network management services.

DoD T&E/Training facilities can no longer afford the many leased lines to interconnect facility systems.
Many point-to-point leased lines have no backup resulting in reliability problems. Additionally, use of
leased lines may be low as lines may be sized according to peak capacity requirements.

A better networking solution to meeting facility communications needs is to reengineer these existing
LAN/WAN networks into a new network which provides efficient circuit switching for both backup
capabilities and the sharing of expensive lines. This new network architecture allows dynamic capacity
allocation to maximize available data bandwidth utilization.

These reengineered telecommunication systems are based on the idea of relaying traffic as quickly as
possible using fast packet relay or fast packet switching. The networking technology used to transport
data is transparent to the TENA infrastructure. Transparency allows tailoring of networking
infrastructure, permitting facilities to use the technologies that best meet local requirements.

 4.5.3.1.3 Capabilities

Network Manager services can be grouped into three general categories: circuit routing, circuit service,
and circuit status. Circuit routing includes those services needed to determine, create, and configure a
connection. Circuit service services include diagnostic and testing functions, traffic and congestion

Volume IV Technical Reference Architecture 121

management, switch over operations, and timing control. Circuit status information pertains to the
status of a connection/network and status of network elements (assets).

The network associated with a physical facility may be partitioned into disjoint subsets (which may not
necessarily coincide with facility segments). Each network subset has an associated network manager.
Each network manager is responsible for the operation, administration, maintenance and provisioning
(OAM&P) of its associated network elements.

The OAM&P services provided by TENA network elements allow for traffic control and congestion
control. Congestion is defined as a condition that exists at the transport layer in the network elements
where a circuit is not able to meet a stated or negotiated level of performance. Traffic control defines a
set of actions taken by the network manager to avoid congestion. Traffic control takes measures to
adapt to unpredictable fluctuations in traffic flows (information bandwidth) and other problems within
the network.

Associated with a connection are certain quality of service attributes. These attributes specify the
network parameters of the technologies used to support the connection. The infrastructure and
network manager allow for scheduling of network assets with specified QOS parameters and for
dynamic redefinition of QOS during a test. These QOS attributes determine what connection
admission control actions and circuit performance parameters will be used in network manager.

It is the policy of the TENA not to manage network QOS but to provide the services that allow user
assets the ability to manage. QOS management is shared among the user, the network manager, and
the network. The mechanism by which this management is carried out is the service contract. The
network user is responsible for agreeing to a service contract with the TENA that stipulates the rules
on the use of a network (such as bandwidth); circuit performance requirements (such as circuit
reliability); and acceptable alternative actions if degraded conditions exist (such as increased error rates
resulting in reduced effective data bandwidth). The network assumes the responsibility of supporting
the other QOS requirements. The TENA may support contract re-negotiation to enable dynamic
network management.

user
application

range
network

network
manager

care
taker

QoS
service
contract

Figure 45. Network Manager Interfaces

Volume IV Technical Reference Architecture 122

QOS parameters are defined in the data dictionary. Any particular facility may support all QOS
parameters or only a subset of them. They may include the following:

n Protocol selection - protocol selection applies to message services as well as to connection services.

n Communications latency on a connection.

n Required level of reliability of data delivery. The implementation of delivery reliability may be through
the protocol selected (TCP/IP or UDP/IP, for example) and/or through the transport technology used.

n Number of errors tolerable or error rate limit desired.

Additional QOS parameters may be defined by facility system implementers to satisfy local
requirements. Each facility will establish a default set of qualities of service which satisfy basic
requirements and map to well known, platform supported resources.

The status of network subsets becomes the shared responsibility between caretaker(s) and network
manager. Network status is composed of, schedule status and current operating state.

The responsibility for operating, administering, maintaining, and provisioning of facility connections lies
with the network manager. The network manager resides outside the infrastructure to allow for
tailoring of its services to specific network requirements and special facility operations needs. The
network manager, in collaboration with network asset caretakers, is required to support infrastructure
scheduling services as well as general network operations support.

Fundamental to the TENA technical reference architecture is the design decision that the route that
data takes through a network isn’t important as long as the connection’s QOS is satisfied. The QOS of
a connection makes up one side of the service contract.

The details of the service contract will be determined by the facility development group. However, the
procedure used to establish this contract can be described. In general: An analyst or support tool
determines the aggregate QOS requirements for all connections needed to support a test. These
requirements are translated to numbers of connections with associated quality of service which drive
the NM to create connections as commanded by the Asset Manager. The specifications are integrated
within the test plan and are, in essence, the service contract specification. During test conduct, these
connection specifications are extracted from the test plan by Execution Manager and subsequently
passed to AM. AM processes these connection requests and passes the connection information along
with QOS specifications to the NM.

 4.5.3.2 Asset Manager

 4.5.3.2.1 Introduction

Business processes supported by TENA are related to the management of assets that facilities own and
make available for general use by members of the enterprise. This is primarily related to the

Volume IV Technical Reference Architecture 123

identification and scheduling of assets for use in supporting tests or exercises and the operation of the
logical range instantiated for test or exercise conduct. The test plan is a description of all of the assets
required for a test or exercise, the datasets which are required to initialize assets or which are required
by assets during execution of the operation, the communication resources to be employed for the test
or exercise (including how assets are wired up), as well as information concerning how the operation is
to be controlled. Test plan information, along with information logged during conduct of the exercise
is also available for use in determining costs and generating billing information.

In the discussion below the term user refers to an application that the facility personnel interact with via
some appropriate human-computer interface. In some cases this application is a TENA Core
application, a mandatory application present in each instance of the TENA Core, and in other cases the
application is a facility specific application. The operation of these applications is essentially identical in
terms of how they interact with the enterprise and TENA Core although they may be quite different
with regard to other aspects of their operation.

 4.5.3.2.2 Asset Operating Mode

Every asset defined in the master asset catalog has a mode of operation that effects scheduling of that
asset. An asset can be in one of the following modes: Independent, Shared, and Exclusive.

Assets that are available for general use and have no restrictions on the number of simultaneous users
or are used on a first come first served basis operate in the Independent mode. When these assets are
operational they are available for use by any logical range without restriction and do not require that
reservation tokens or access tokens be obtained before they can be used. Users must be cognizant of
the fact that these assets may be overloaded when operating in this mode. In general, facility designers
will provide adequate resources and sufficient copies of Independent mode assets so that overloading is
not a problem.

Assets which operate in the Shared or Exclusive mode are schedulable assets and require that a logical
range obtain a reservation token and access token before they can be used. A reservation token is a
token provided by the asset’s caretaker which affords the requester access to the asset during the
reserved period. This allows for planning use of facility assets. It does not, however, guarantee that
the reservation will be honored. Any reservation may be overridden by a higher priority user and
conditions of exercise execution may cause a test or exercise to run over its reserved time slot for an
asset. Assets may also become unavailable because of failures or required maintenance. It is the
responsibility of a facility owner to manage the schedule for his facility assets. Facility owners
accomplish this through the asset caretakers and management applications programs which monitor
and control use of assets and which are provided with sufficient privileges to access status information
and issue commands to control asset allocation.

Shared assets allow for simultaneous use of the asset by more than one user. The number allowed is
determined by the asset owner who sets the number of reservation tokens and access tokens which are
created for the asset. The owner of the asset must insure that when the allotted number of users are
making use of the asset that the asset can support the entire user set with acceptable performance. In
cases where there is only a single token, hence one user at a time is allowed, the operating mode is
Exclusive and the asset is then completely dedicated to the user. For example, instantiable assets which

Volume IV Technical Reference Architecture 124

are single threaded or assets with capacity restrictions which prohibit more than a single user at a time
would operate in the Exclusive mode.

 4.5.3.2.3 Reserving an Asset

The Protocol for reserving an asset is as follows: A user executes the Reserve Asset service that
transmits the request to the caretaker of the asset. The caretaker checks the current asset schedule to
determine if the reservation can be honored. If the slot is available then the request is pushed unto the
request queue. User applications review this queue at some interval using the Get Reservation Queue
service. The facility owner (directly or through an application program on the caretaker) decides
whether to grant or deny the request and issues a Process Reservation Request service to Asset
Management Services (a TENA Core mandatory application) indicating whether the request is to be
satisfied or denied. The caretaker then responds to the requester with the status of the reservation and,
if the reservation was granted, a reservation token.

If the requested schedule slot is not available the caretaker responds to the requester with a message
denying the reservation. If the requester has set the persistence flag to indicate that he wishes to persist
in obtaining the reservation the request is pushed unto the request queue. The asset owner can then
decide, when the request queue is reviewed, to either deny the request or grant it by overriding the
current reservation holder. Overriding an existing reservation is accomplished by invoking the
Relinquish Token service for the current reservation token holder then issuing a Process Reservation
Request service call for the new requester. These actions are reflected to the effected users though the
local Asset Management Application component of the TENA Core. The basic strategy for a user to
obtain an asset reservation would be to initially request the reservation with persistence set to not
persistent then if notified that the reservation attempt failed determine if it is necessary to attempt to get
the existing reservation overridden, to select a different time slot for the asset, or to schedule a different
asset. If the choice is to attempt to override the existing reservation the user would again invoke the
Reserve Asset service with the same asset identity and time slot but with persistence set to persistent.

The owner of an asset may use any appropriate criteria or process to adjudicate reservation requests.
For example, an owner may want groups of assets to be used collectively and, therefore, scheduled as a
group, or owners may require a review of asset requests by a scheduling committee before deciding
which requests to grant. The policies may be implemented in a manual fashion or by an application
program operating on behalf of the owner. Since the owner determines what collection of equipment,
space, personnel, materiel, etc. is an asset for scheduling purposes the owner controls the granularity
for scheduling purposes. All of the assets are described in the Master Asset Catalog along with
information on their composition and scheduling restrictions.

Some asset reservations may be allocated on the basis of a capacity, for example, bandwidth of a
communications channel. Requests for these assets are accompanied with a description of the
requested capacity allotment. This allotment request is used to determine how many simultaneous
users can be supported and can be a decision criteria for granting the reservation.

 4.5.3.2.4 Asset Control.

Volume IV Technical Reference Architecture 125

As stated earlier, the holder of a reservation token is not necessarily guaranteed access to the asset. If
an exercise runs over their reservation time they cannot, in general, be halted indiscriminately. They
must either be allowed to complete or facility personnel controlling the exercise must decide whether
the exercise can be terminated early. These decisions are beyond the concern of the architecture.
Assets may also become unavailable because of faults or required calibration, etc.

This set of conditions is managed by requiring that a logical range obtain an access token before the
asset can be used (if the asset is not operating in the Independent mode). This token entitles the holder
to make actual use of and control the asset. The access token is obtained by a logical range through an
invocation of the Acquire Asset service. The caretaker responds by examining the asset’s status
(equivalently, searching for an access token). If a valid reservation token was provided by the
requester and an access token is available, the access is granted and the access token is dispatched to
the requester. If access cannot be granted a denial response is sent to the requester. This means that
unscheduled use of assets is supported. If conflicts arise for unscheduled use the facility operators
must adjudicate them. Users should note that unscheduled access to an asset requires that they first
obtain a reservation token, typically set with the time slot to run from the time of request.

The asset owner, through an application program, may override an access request or cancel an access
request which has already been granted, even during the conduct of an exercise, by invoking the
Relinquish Token service for the appropriate token holder. User programs must honor this command.

Information on the holder of tokens and any asset status can be obtained by using the Query Asset
Status service.

 4.5.3.2.5 Reservation Cancellation

As described above, a reservation can be canceled at any time by the owner of the asset. This is
accomplished though the asset’s caretaker and a privileged applications program. The Process
Reservation Request service, and Relinquish Token service should be limited to use by the privileged
application which acts on behalf of the owner.

No reservations are granted directly by Asset Management Services. All requests are queued and wait
for owner action via a Process Reservation Request service. Asset Management Services will remove
any request that is not acted upon before the end of its requested schedule time.

At any time the owner may cancel a reservation by issuing a Relinquish Token service to the
reservation holder. The reservation holder must surrender the token. If the reservation holder does not
or cannot respond Asset Management Services will note the fact and when a request for the access
token comes from the canceled holder it will be denied. Asset Management Services will vacate the
reservation slot of the asset’s schedule for the canceled reservation.

If a cancellation occurs after the reservation holder has obtained an access token the owner must issue
a Relinquish Token service request. The holder of the access token must cease use of the asset and
surrender the token in the most expeditious manner. However, under certain conditions neither the
infrastructure nor any applications assets may be able to force a user to give up use of an asset when
canceled. Facility operators may have to intercede to recover the asset.

Volume IV Technical Reference Architecture 126

A reservation request may itself be canceled by the requester by using the Rescind Reservation Request
service. This service is only effective for reservation requests issued by the asset attempting to
withdraw the request.

 4.5.3.2.6 Description

Manages requests for use of assets in the master asset catalog. An exercise is conducted on a logical
range. The status of and schedule for assets in the master asset catalog are managed here. Facility
caretakers at each facility are queried by Asset Manager for the assets that are physically located at that
facility. Assets are reported available or not available when requested by facility management
applications.

Scheduling certain assets may involve human interaction to schedule. This needs to be recognized and
mechanisms provided to stimulate the agency that effects the scheduling and record pertinent
information for subsequent use during exercise execution. Asset Manager works in concert with
Execution Manager to resolve these sorts of manual operations or manually assisted operations
happen.

Asset Manager is also responsible for managing access to assets during the execution of a test.
Scheduling an asset for use during a test does not guarantee that the asset is available at the scheduled
time. The asset may be down for maintenance, another user may still be using it, or any of a number of
causes could lead to the unavailability of an asset at the previously scheduled time. During the
execution of a test, Execution Manager will query Asset Manager when access to an asset is required.
Asset Manager will grant access to the asset if the requesting test holds a valid reservation and the asset
is available. If access is not granted Execution Manager can query an appropriate facility management
application for resolution of the conflict.

Additionally Asset Manager is responsible for the instantiation of instantiable assets that are not
currently executing and coordinates with the Network Manager to have dedicated circuits established
and allocated.

 4.5.3.2.7 Services Provided

Volume IV Technical Reference Architecture 127

Asset
Manager

Acquire Asset

Release Assest

Reserve Asset

Modify Asset
Property

Relinquish Asset

Rescind
Reservation

Clear Schedule

Add Asset

Process
Reservation

Query Asset
Status

Relinuish Token

Get Reservation
Queue

Get Schedule

Remove Asset

Figure 46 . Asset Manager - Services Provided

 4.5.3.2.7.1 Reserve Asset

This service is used to request dedicated service over some period of time from a system asset. Asset
Manager will assign a unique request ID to the request and place the request on the asset’s request
queue.

 4.5.3.2.7.2 Release Asset

Used by a system component to release an asset that it has previously reserved for use. Returns the
reservation token.

 4.5.3.2.7.3 Get Schedule

This service is used to obtain the current schedule for an asset or set of assets managed by a caretaker.

 4.5.3.2.7.4 Clear Schedule

A service called to mark an asset’s schedule as completely open. Only the asset’s caretaker can clear
its schedule.

 4.5.3.2.7.5 Add Asset

Volume IV Technical Reference Architecture 128

This service is used to add a new asset to the system. This includes adding the asset to a caretaker’s
set of managed assets, modifying the local asset catalog and schedule to reflect the new asset, and
adding the new asset to the master asset catalog.

 4.5.3.2.7.6 Remove Asset

This service is used to remove an asset from the system. This includes removing the asset from its
caretaker’s set of managed assets, modifying the local asset catalog and schedule to reflect the asset
deletion, and deleting the asset from the master asset catalog. Only an asset’s caretaker can remove it.

 4.5.3.2.7.7 Modify Asset Property

This service is used to modify the value of an asset’s property. These properties are listed in the local
and master asset catalogs and used to control use of the asset. Only an assets caretaker can modify its
properties.

 4.5.3.2.7.8 Query Asset Status

This service provides a means for users to obtain information on the value of an asset’s properties.

 4.5.3.2.7.9 Acquire Asset

Users invoke this service to obtain use of an asset. That use may be exclusive or shared depending on
the asset. Once acquired an asset is available for use by the requester until the asset is relinquished. If
the asset is an instantiable asset, Asset Manager is responsible for instantiating it and generating an
instance ID. If the asset is a dedicated communications channel Asset Manager is responsible for
coordinating with the Network Manager to have the dedicated circuit established and allocated.

 4.5.3.2.7.10 Relinquish Asset

This service is used to relinquish an asset and make it available for use by other applications. If the
asset is an instantiable asset, then Asset Manager will terminate the instance of the asset. If the asset is
a dedicated communications channel Asset Manager will coordinate with the Network Manager to
disconnect the dedicated channel.

 4.5.3.2.7.11 Relinquish Token

This service is a callback service invoked by Asset Manager on a holder of a reservation token. It is
exercised when a scheduling conflict arises from a high priority user requesting to override an existing
reservation or allocation for an asset.

 4.5.3.2.7.12 Get Reservation Queue

This service is used to extract the current set of pending reservation requests for a particular asset or
assets.

Volume IV Technical Reference Architecture 129

 4.5.3.2.7.13 Process Reservation

This service is used by a caretaker to command that a pending asset reservation be processed.
Processing a request implies that it is either being satisfied or denied. Satisfying a request involves the
recording of the requesters reservation and dispatch of the reservation token to the requester. Denying
a request implies the dispatch of a null reservation token. In both cases the request is deleted from the
request queue and the Reservation Token is delivered to the reservation requester.

 4.5.3.2.7.14 Rescind Reservation

This service is used to rescind a pending reservation request. It must be called by the application that
originally issued the request. In response to this service request Asset Manager deletes the reservation
request from the appropriate reservation request queue.

 4.5.3.3 Execution Manager

 4.5.3.3.1 Description

Execution Manager (EM) manages the execution of a test plan on a logical range. Based on the set of
assets and events defined in the test plan, EM:

 • Acquires the assets

 • Connects them as planned

 • Brings them to an initialized state

 • Ensures they are ready to begin execution of a plan

 • Shuts them down in an orderly fashion upon completion or termination of the plan.

In the event that the plan must be interrupted, this service manages the pause and resume of a plan.
The Execution Manager supports the dynamic replacement of assets in an executing plan. A plan can
be validated prior to its actual execution by running the plan in validate mode.

 4.5.3.3.2 Assumptions

A (PR) exists and is accessible by Execution Manager. The PR will contain all plans currently
known to the infrastructure.

The Execution Manager can execute multiple plans simultaneously as long as the required asset
scheduling is achievable.

Acquiring certain assets may involve human interaction. This requires that Execution Manager have
mechanisms that identify the protocols for this sort of interaction or human assistance and provides
mechanisms for the assets to be secured for use. The status of these assets must be reflected in the

Volume IV Technical Reference Architecture 130

logical range status and means provided for Execution Manager to determine that it has, in fact, all of
the resources dedicated to it that it needs.

 4.5.3.3.3 Services Provided:

Execution
Manager

Pause Plan

Terminate Plan

Run Plan

Resume Plan

Replace Asset

Figure 47. Execution Manager - Services Provided

 4.5.3.3.3.1 Run Plan

Facility management applications make use of this service to request that a particular plan be executed.
Invoking this service causes the logical range which is defined in the test or exercise plan to be
instantiated. This act involves the acquiring of all the assets which make up the logical range, the
instantiation of assets where required, and the initialization of the assets. This service is not directly
involved in the actual conduct of a test or exercise.

 4.5.3.3.3.2 Pause Plan

 This service is used to cause a pause to be sent to the facility assets that are constituted for a plan. The
semantics of a pause to assets are that the asset is to cease producing changes to its internal state when
those changes would result from plan play. Sensors would continue to operate and data display assets
would continue to display the information they currently possess.

 4.5.3.3.3.3 Resume Plan

This service is used to cause a resume to be sent to all facility assets which have been previously paused
for a plan. The assets once again engage in free play and respond to events and data as they are
defined to.

 4.5.3.3.3.4 Terminate Plan

This service is used to cause the orderly termination of a plan. Assets which must engage in special
processing to effect an orderly and error free shutdown are directed to do so. Input/output devices and
channels are flushed and shut down, files are closed, and access tokens for assets are returned to their
caretakers. Instantiable assets are terminated.

 4.5.3.3.3.5 Replace Asset

Volume IV Technical Reference Architecture 131

This service is used to substitute one asset for another in an executing plan.

Run-time modification of a plan is needed to support events such as asset failure. In such an instance,
it may be possible to remove the failed asset and replace it with another. This service allows for a
temporary substitution of the offending asset for the remainder of the plan’s execution or until which
time the Test Conductor chooses to remove it from the plan execution.

 4.5.3.4 Initialization Manager

 4.5.3.4.1 Description:

The Initialization Manager manages assets used to initialize other assets associated with a Test Facility.
These assets are typically data sets used by applications to establish an exercise’s initial conditions, e.g.,
terrain databases, environment settings, and start conditions. Initialization assets can also include
bootstrap procedures for devices, interactive scripts that require a human-in-the-loop, or any other
entity that supports initialization. These assets may or may not be associated with a test plan.

 4.5.3.4.2 Rationale

The variety of initialization assets and their distributed location suggests the need for a unified concept
and generalized service to access initialization assets. Without this service the applications will be
forced to implement access mechanisms for each type. The existence of such a service also maximizes
reuse potential since available initialization assets will be made visible to the community at large for use
in a particular exercise or as examples for use in a similar context.

 4.5.3.4.3 Assumptions

The following assumptions are made regarding Initialization Manager:

Life cycle management (e.g., create, destroy) of initialization assets is outside the scope of the service.
This service is focused on managing access to these assets.

Any initialization asset can be included in the master asset catalog. Whether it is actually catalogued is
dependent on the creator of the asset. However, any initialization asset referenced in a test plan must
be included in the master asset catalog.

Initialization assets have important relationships with other assets that are retained as part of the master
asset catalog. For instance, an initialization data set may be created to initialize a certain type of
simulation software. It is of no value to another type of asset. These relationships can be defined at
the asset level (e.g., test plan T uses initialization data set D) or at the metadata level (e.g., asset type
AT uses initialization data set type DT).

Volume IV Technical Reference Architecture 132

The granularity of the initialization asset is equivalent to that of the asset being initialized. For instance,
if three assets are required for a test, and each requires initialization data, then the data is partitioned
into three separate data sets. This avoids the introduction of composite initialization assets that provide
broader initialization than what is required for the asset thereby promoting reuse.

There is a many-to-one relationship between an asset type and associated initialization assets.

A single copy of an initialization asset exists although it may be referenced and used in multiple
instances of assets that require that type of initialization.

An initialization asset exists at various states of readiness. These states are termed the asset
development cycle. (See Notes section for a detailed explanation).

 4.5.3.4.4 Service Context

The collection of entities that Initialization Manager interacts with to perform its processing is:

n Distribution service (DS) - the infrastructure service that manages the distribution of data among
facility assets

n Asset Manager (AM)- the required application that manages the scheduling of facility assets.

n Initialization Asset Collection (IAC) - it is assumed that Initialization Manager (IM) will maintain a
persistent store of initialization asset information. This persistent collection is given the name of
Initialization Asset Collection in this specification.

n Requesting Asset (RA) - any asset (including an infrastructure service) that requests an initialization
service.

 4.5.3.4.5 Services Provided:

The following services are specified for The Initialization Manager:

n Add Initialization Asset - introduces an initialization asset entry into the IAC

n Remove Initialization Asset - deletes an initialization asset entry from the IAC

n Get Initialization Asset Content - retrieve the content of a specified initialization asset

n Copy Initialization Asset Content - place a copy of the initialization asset contents into another asset
specified by the requesting asset

n Modify Initialization Asset Access Profile - change the value of one or more access properties
associated with an IA entry in the IAC

n Get Initialization Asset Profile - get a copy of a selected Initialization Asset profile for an Initialization
Asset entry

n Release Initialization Asset Content - destroy instances of Initialization Asset content exchange classes

Volume IV Technical Reference Architecture 133

 4.5.3.4.5.1 Add Initialization Asset

This service provides for adding an initialization asset entry into the IAC. An initialization asset is
added into the IAC after it has been assigned an asset ID and added into the Master Asset Catalog
(MAC) through Asset Manager. One of two IA entry types can be added to the IAC. An entry can
include both its metadata and content. In this case, a content parameter is supplied that contains a list
of ICC static class and their attribute values. An entry can also be a pointer to the actual content. In
this case, an access profile is provided.

While Asset Manager provides the capability to add assets to the Master Asset Catalog, there is a need
to retain additional information about an initialization asset. For example, the access properties will
provide details of where the asset is located and the method of access for subsequent retrieval and
copy.

 4.5.3.4.5.2 Remove Initialization Asset

Remove an initialization asset entry from the IAC. Note that this service does not delete the
initialization asset; it merely makes it unavailable through the infrastructure.

An initialization asset may need to be removed from the IAC for several reasons: the initialization asset
has been retired from the facility, or it is no longer a correct data set or procedure.

 4.5.3.4.5.3 Get Initialization Asset Profile

Retrieve a copy of a selected profile type from an initialization asset entry

In order to provide tools like catalog browsers, it is necessary to provide a service that can retrieve the
profiles contained in an IA entry.

 4.5.3.4.5.4 Modify Initialization Asset Access Profile

Assign values to the access properties of an initialization asset

Over the course of an initialization asset’s development cycle (see notes section) there is likely to be a
need to change or extend values required for access to the asset. For instance, an initialization asset
could be moved to a different device or location or its visibility to infrastructure users may be
temporarily restricted. Note that only access profile information can be modified with this service;
modification of content must be performed outside the infrastructure or through a remove/add
combination of services.

 4.5.3.4.5.5 Get Initialization Asset Content

Provide the content of an initialization asset to a requester.

This service provides a common mechanism for retrieving initialization data regardless of the location
or underlying storage mechanism of the asset. This location can include the IAC.

 4.5.3.4.5.6 Copy Initialization Asset Content

Volume IV Technical Reference Architecture 134

Copy an initialization asset to a supplied location.

There are several reasons for applications to acquire a copy of an initialization asset:

• Some initialization data sets may be very large and the test plan may request a preload of the initialization
data (e.g., a terrain database)

 • Test execution performance may dictate the co-location of an initialization asset with the asset itself

• Anew asset’s initialization asset can be derived from an existing initialization asset

• To debug a test plan it may be desirable to load a copy of the initialization data to the debug environment

 4.5.3.4.5.7 Release Initialization Asset Content

Destroy all instances of initialization asset content exchange classes for the identified initialization asset

This service provides for the destruction of all content exchange objects instantiated for purposes of
retrieving the content of an initialization asset. Typically used by AM when Execution Manager
relinquishes an initialization asset.

 4.5.4 Recommended Application Programs

 4.5.4.1 Applications to Support Management of Logical Time

 4.5.4.1.1 Background

Software assets that will be introduced to the TENA environment may have internal mechanisms to
handle the management of time. Time management within the TENA infrastructure must recognize
and work with these inherent characteristics of the assets.

Some application assets will use a concept of logical time. Logical time is an abstract notion of time
that drives a model’s computations but that does not necessarily match real-time. Logical time
simulations can model events in the future, move faster than real-time clocks, and sometimes move
forward and backwards in time. Logical time simulations are commonly used for analysis. Simulations
of these types may be of use for stimulating a system under test or for post-processing test results.

A collection of two or more applications is said to be coordinated if their operations are constrained to
ensure that causal and temporal relationships are properly followed. Sometimes, coordination can be
provided implicitly within the applications, once they are synchronized to a common clock. Depending
on the design of the application, however, this approach may be insufficient. In cases where
synchronization is insufficient to guarantee causality and correct temporal order, the recommended
applications 11 discussed in this section may provide the tools to control the sequence of message
processing.

 11 Other implementation options for time management also exist, and should be identified and evaluated as part of the
TENA transition plan. Because of the possibility of other implementation approaches, we have made these
recommended applications rather than mandatory applications.

Volume IV Technical Reference Architecture 135

 4.5.4.1.2 Time Management Considerations

Time management requirements in TENA are driven by three considerations. One is the need to
enable users to integrate assets that have diverse (internal) approaches to dealing with time. The
second is the need to produce correct results in a distributed environment where network latencies can
permute the order of messages arriving from different assets. Finally, and most important, is the need to
provide test planners with one of the tools they need to achieve repeatability.

 4.5.4.1.3 An Implementation Option

At this time, there are no direct services provided as part of the TENA Core for time management.
Instead, it is recommended that all time management for TENA be provided indirectly through the
HLA RTI. Those services are described in the High Level Architecture Interface Specification, Version
1.2. One possible implementation is to provide access to the RTI will be through a Bridge. An
example bridge configuration is shown in Figure 48:

TENA Infrastructure

AC
Surr

Data
Logger

Display Bridge

HLA RTI

Virtual
Simulator

Analytical
Simulation

Figure 48. Bridge from TENA to HLA

 4.5.4.1.4 Rationale

An analysis of use cases for the TENA domain identified a few assets that require coordinated time
management. All of the identified assets are from the modeling and simulation domain. Embedding
organic time management services into the TENA would require a substantial effort and may result in
performance degradation for all users, even those without a time management requirement. The HLA
provides time management services that adequately support the needs of the test and training facilities
that use simulations. These HLA services can be effectively exploited through the use of a bridge.

 4.6 Relationship of TENA to HLA

 4.6.1 Introduction

An important goal of TENA is to reuse the results of other DoD architecture development efforts,
when appropriate. The DoD High Level Architecture (HLA) was being specified and developed
during the time that the TENA project was initiated. Similarities in the goals of the programs were

Volume IV Technical Reference Architecture 136

obvious. Furthermore, since TENA is required to support training and to incorporate simulations,
there was good reason to believe that some of the solutions derived for the simulation community
would be appropriate for the test ranges as well. The results of the HLA Engineering Protofederation
during fiscal year 1996 confirmed the promise of HLA for test and training range applications, but also
highlighted some important HLA challenges that remain ahead, particularly dealing with performance
of the Runtime Infrastructure. Furthermore, briefings presented by TENA team during fiscal year 1996
posed some additional concerns regarding the application of HLA to the test and training ranges.

Much has happened since those early days. The HLA has continued to grow and evolve, and a TENA
specification has been derived. It’s now time to revisit the question of how HLA can be leveraged by
the test and training community to evolve to a common architecture.

First, we should note that the TENA architecture was not limited to the views and concepts included in
the HLA. Instead, the team based the derivation of the TENA architecture on early results of the
requirements analysis and business process modeling tasks. Several members of the TENA IPT team
attended technical meetings on the HLA and tracked the evolution of that architecture. It’s accurate to
say that the HLA work influenced the thinking of the TENA architecture IPT team, but did not
constrain its solutions.

The TENA architecture team was charged with developing an architecture to support a business
enterprise. The requirements included the need to manage resources and integrate a wide variety of
components related to all aspects of operating T&E and training facilities. This was well beyond the
scope of allowing components to exchange data. The current concept for the HLA addresses a much
more restricted set of issues. It provides a set of basic capabilities which allows components
(federates) to be constituted into an execution, supplies some fundamental simulation functionality
(save, restore, pause, resume, etc.), and enables the federates to exchange data. Thus, while the HLA
may provide essential functionality which TENA can make use of it falls well short of the type and
amount of support that TENA needs to provide to the systems it supports. We should point out that
this is by no means a shortcoming of the HLA since it has never been the intent of the HLA to support
this wide range of system capabilities.

4.6.2 Overall Architecture Similarities

At the top levels, the HLA and TENA share many common features. The functional views partition
the system elements into applications and infrastructures. The HLA and TENA infrastructures
encapsulate the distributed systems services that provide basic integration and data exchange
mechanisms. Applications coordinate their activities with other applications through those
infrastructures. These applications are required to interact with their infrastructures using defined
interface specifications and Application Program Interfaces (APIs). Otherwise, application designers
are given broad flexibility to create applications to suit user need, and the architecture minimizes
constraints on the designs. Both the HLA and TENA are intended to support reconfiguration of
applications. However, TENA supports a much more robust notion of reconfiguration that provides
not only more degrees of freedom to reconfigure but supports reconfiguration over very short periods
of time (during exercise execution). This is driven by the transient and rapidly changing nature of
T&E/open air training exercises and reliability concerns. Integration can occur before, during or after a
test or training exercise.

Volume IV Technical Reference Architecture 137

The TENA and HLA approaches depend on communities of users to achieve data interoperability
through agreements on object-based representations of shared domain data. The architectures support
two basic kinds of shared information. Static classes have attributes that will typically change status
several times over the life of a test or training exercise. These classes have persistence. The
architectures also support the sharing of transient data, called interactions in the HLA and events in the
TENA. Transient data lasts until delivered to the subscribers of the data.

Differences between the two architectures begin to appear at the infrastructure design levels. In this
analysis, we focus on the functions supported by the infrastructures, and the service groups that
provide those capabilities.

 4.6.3 HLA and TENA Service Groups

The HLA Runtime Infrastructure contains six major service groups. The primary functions of the
service groups are listed here:

n Federation Management: provides services for creation, dynamic control, modification, and deletion of
a federation execution

n Declaration Management: provides services for publication and subscription of object state information
and the interactions generated and received by a federate

n Object Management: provides services for registration, modification, and deletion of objects and for
sending and receiving interactions

n Ownership Management: provides services that allow federates to transfer ownership of object
attributes

n Time Management: provides mechanisms for controlling the advancement of each federate along the
federation time axis

n Data Distribution Management: provides services which facilitate the explicit management of data
distribution through a concept known as routing spaces

n

n In TENA the information management infrastructure services are collected into the following groups:

n Distribution Services: Manages the distribution of data between range assets and infrastructure
components

n Connection Services: Manages the transfer of information between range assets using information
channels (circuits and protocols) that support special quality of service requirements and allow dynamic
acquisition and configuration of communications resources

n Message Services: Manages the communications based on a discrete, datagram oriented service based
on predefined communications resources supported directly by the underlying platform for any purpose
applicable within range operations

Volume IV Technical Reference Architecture 138

n Clock Services: Manages and synchronizes the range system global clock

n Required core applications that support and compliment the information management services are:

n Asset Manager: Manages facility assets including scheduling their use and tracking their status

n Execution Manager: Manages the instantiation of the logical range, setup of assets to support tests and
exercises, and execution of an exercise

n Initialization Manager: Manages assets used to initialize other assets associated with a logical range

n Network Manager: is responsible for acquisition of communications resources, configuration of
communications channels, monitoring status of communications, and providing for communications
reliability

 4.6.4 Infrastructure Service Similarities

Some functions are supported by both the HLA and TENA. For example, both architectures use a
publication/subscription model for data distribution. This is a major similarity since data distribution is
a dominant function of both architectures. The basic capabilities of publication, subscription, object
registration, object discovery, and data update are available in both architectures. In the HLA,
declaration management provides services for the publication and subscription of data. Object
management addresses the management of object instances and updates. In the TENA, distribution
services addresses data publication and subscription and the management of object instances and
updates.

The architectures use identical approaches for temporal coordination, when needed. In the HLA, time
management provides the services that allow federates to coordinate their time and to manage logical
time at real-time, slower than real-time, or faster than real-time. Some TENA tests don’t need to use
this service. However, test and training exercises that include simulations are likely to need this
capability. In the TENA, any assets that require coordination of time (other than wall clock
synchronization) must use the HLA. One implementation approach is to use an HLA-TENA bridge
asset as an interface between the HLA Run Time Infrastructure (RTI) and the TENA infrastructure.

Some functions are supported in both the HLA and TENA infrastructures, but their capabilities are
defined differently because of differences in the community requirements.

For example, the HLA and TENA architectures provide support for overall management of tests or
training exercises. In the HLA, federation management provides services to create a federation
execution and to allow federates to join the execution. Additional services provide for saving the state
of the execution, pausing the execution, and resuming the execution. In TENA, management functions
such as these are allocated among several required core applications and certain site specific
applications. The Execution Manager provides the support for running the test or exercise from either
a pre-stored plan or a manually created, unplanned configuration, and for pausing, resuming, resetting,
and terminating. Differences between the two approaches are due to the following factors:

n In the TENA domain, test plans are usually, but not always, generated prior to a test. Making use of
this plan can make setup more efficient. It also assures us that the plan is followed, or that the TENA
infrastructure knows about any deviations from the plan.

Volume IV Technical Reference Architecture 139

n There are a number of safety considerations which must be managed. Many of these require very high
reliability support, exceptional system integrity, and direct human control.

n Most of the management for federations is delegated to federates (one or more of which could be
exclusively dedicated to this). TENA needs to insure uniform management practices across facilities
distributed over wide geographic areas, across all tests and exercises, and for a continuous and extended
time period.

n In the HLA, data distribution management (DDM) is used to limit data exchange to defined
publication/subscription regions. This enables a federation to reduce the amount of unnecessary data
transfers. The RTI does not filter data by region. This is a federate responsibility. The HLA approach
to data distribution management was being developed and tested under the STOW program while the
TENA architecture was defined. It was too early to assess the effectiveness or efficiency of the HLA
approach. An initial assessment of TENA testing applications indicated that typical test range filtering
requirements are far more simple than the HLA STOW requirements. Furthermore, the HLA DDM
approach assumes that the federates (simulations) contain the logic to perform data manipulation and
filtering. This approach would place unrealistic burdens on TENA assets. The TENA approach
embeds simple, standard filtering algorithms within distribution services. Efficiency is very important
in the real-time testing domain and it is likely that a larger number of filter types is required. TENA
allows additional filter types to be added to the system in a relatively straightforward fashion. When
more complex filtering approaches (or filters performing transformations on data) are needed by test
ranges, users can incorporate these through special filtering assets.

 4.6.5 Significant Infrastructure Service Differences

Some functions were introduced into the TENA infrastructure that were not supported by the HLA
RTI. One capability that is supported by the HLA RTI was dropped from the TENA infrastructure.
This section will describe these significant infrastructure service differences.

In the HLA, the quality of service for the network is an RTI implementation issue. If available RTI
implementations do not offer the quality of service needed by users, federation developers are expected
to build an RTI that does meet requirements, or to develop an RTI that uses special network channels.
In the TENA, the quality of service can be requested at the time of publication. The infrastructure
verifies that the network bandwidth is available to support the requested quality of service. This extra
flexibility is needed in TENA because of the real-time performance requirements and the need for test
repeatability.

In the HLA, the packetizing of data by the RTI is left as an implementation issue for RTI developers.
In the TENA, message services packetize data for use in most data transfers that do not require special
rates or bandwidths, and connection services ensures that a user-specified quality of service can be
provided, even if not anticipated ahead of time. TENA offers more infrastructure support than the
HLA for controlling the packetizing of data and providing various qualities of service from
communications resources. These services are expected to be important for controlling the
performance of high-bandwidth data transfers (e. g. telemetry and video).

TENA provides more flexible, finer grain mechanisms for controlling access to information and
insuring secure communications. The T&E and open air range training community may control access
to information for more than just restricting access to classified information. They protect information

Volume IV Technical Reference Architecture 140

of a business nature and use the mechanisms to control information in assets which are shared across
multiple tests or exercises. The current concepts for information protection in the HLA rely on
segmenting executions and separating them with bridge federates which provide guard technology. All
federates within a segment operate at the same security level.

In the HLA, infrastructure services are not needed to set a federate’s wall clock. The relationship
between wall clock time and federate time is managed by the federate. In the TENA infrastructure,
clock services are used to synchronize the wall clocks of the various infrastructure instances and their
assets. This is required so that exercise results can be interpreted properly and real-time position data
can be properly correlated.

In the HLA RTI, no services are defined for scheduling or checking the availability of federates. In the
TENA infrastructure, the Asset Manager is used to schedule limited resources. The need for the Asset
Manager in TENA is driven by these two considerations:

Some assets cannot be shared during a test; others offer only limited sharing. Careful planning and
scheduling is vital to the smooth operation of the logical range. HLA federates, in contrast, are
software modules that can generally be copied for other users.

To support the test range business processes (e. g. planning, billing, etc.), information needs to be
logged concerning when assets are scheduled and used. The distributed simulation community does
not have the same requirements for business process support within the infrastructure.

In the HLA, federate initialization data that is not part of the Federation Object Model (FOM) is not
managed by the infrastructure. In TENA, all initialization data for assets are stored and retrieved
through the Initialization Manager. The Initialization Manager within the TENA Core encapsulate the
access methods and provide opportunities for recording the test conditions. This is useful for
interpreting test results and for repeating the test, when necessary. It permits distributed storage of
large data sets and transparent access regardless of location of storage or the type of storage
technology.

In both the HLA and TENA, the privilege for changing the value of an attribute is uniquely held by a
singe application at any point in time during a test or exercise. In the HLA, a federate that has this
privilege to update values is said to own the attribute. The RTI provides services to allow federates to
exchange ownership of attributes and also to transfer permissions to delete objects. This capability is
provided under the ownership management service group. In TENA, the need for capabilities to
transfer ownership is envisioned for dealing with reliability and associated issues. We have not
determined the form of that support at this time.

Volume IV Technical Reference Architecture 141

4.6.6 Function Mappings to Service Groups

The following table summarizes the functions supported by the TENA and HLA infrastructures and
maps those functions onto the service groups or required applications.

Table 1. Summary of TENA and HLA Functions

FUNCTION COMPARISON HLA Service
Group

TENA Core

Data Distribution Same functions
supported

Declaration
Management
Object Management

Information
Management
Services

Temporal Coordination same functions
supported - same
implementation
recommended

Time Management Recommended
Applications for
Logical Time
Management

Overall Management similar -- TENA
makes use of test
plan and has stop
button

Federation
Management

Mandatory Core
Applications and
some site specific
applications

Data Distribution Control similar -- TENA
simplifies for asset
developers

Data Distribution
Management

Distribution Services
Filtering Assets

Message Packetizing similar -- TENA
provides greater
bandwidth controls

RTI Implementation Connection Services
Message Services

Quality of Service HLA provides
limited
implementation
dependent choices,
TENA allows wide
range of dynamic
and unplanned
choices

RTI implementation Distribution Services
in concert with
Connection Services
and the Network
Manager

Clock Synchronization TENA only --- Clock Services
Asset Management TENA only --- Asset Manager
Initialization of Assets TENA only --- Initialization

Manager
Change of instance and
attribute ownership

HLA and TENA Ownership
Management

Required but exact
approach not
determined yet

Volume IV Technical Reference Architecture 142

5.0 Standards and Protocol

5.1 INTRODUCTION

5.1.1Purpose

The section presents the candidate Standards and Protocols for TENA.

The Standards and Protocols provide for agreements on issues that support architectural requirements.
These involve data representation, communications protocols, supporting platform capabilities, and
processes. TENA standards activity has been focused on identification of available standards.
Selection has been deferred to development of system architectures and implementations. Experiments
and prototypes will allow us to evaluate candidate selections.

Communications standards are a key area of concern for TENA. TENA has supported a modest test
of the applicability of ATM technologies, specifically between Edwards Air Force Base and China
Lake. A report of this is provided in Volume X. Additional efforts to categorize representations of
open air range data, transfer characteristics, and potential standards is also under way at NAWC, China
Lake. Results will be incorporated into a revision of this document.

5.2 IDENTIFIED AND CATALOGUED STANDARDS AND PROTOCOLS

The Standards and Protocols presented in Tables 2-3 were reported as in-use Standards and Protocols
by various Range activities. Those presented in Tables 5-16 are Standards and Protocols identified in
the Technical Architecture Framework for Information Management (TAFIM) and the Joint Technical
Architecture (JTA). Finally, Table 17 lists Range Commanders Council Standards and Protocol
Source Documents. This list is provided to support future Standards and Protocol selection and
development efforts. The list contains documents that should be good sources for Standards and
Protocols or serve as reference material in the development of new Standards and Protocols.

Volume IV Technical Reference Architecture 143

Table 2. Atlantic Fleet Weapons Training Facility (AFWTF) Digital Data Standards

AFTWTF Standards and Protocols TENA Categorization
Data Adopted Standard or Specification Facility System Technical TBD

Standards Architecture Architecture

 Digital Data
Standards

MIL-STD-1397B (SHIPS), Military Standard,
Input/Output Interfaces, Standard Digital
Data, Navy Systems of 3 March 1980

√

Inter-Range Instrumentation Group (IRIG)
Time Format B

√

IEEE Standard 802.3 (the Ethernet Standard) √
Naval Tactical Data Systems, Model 4, Link-
11 Operational Specification, Revision 2 (OS-
4-11.2)

√

Volume IV Technical Reference Architecture 144

Table 3. Miscellaneous Standards and Protocols

Miscellaneous Standards and Protocols TENA Categorization
Simulation Adopted Standard or Specification Facility System Technical TBD

Architecture Architecture
 Simulation Data
Exchange
Standards

Distributed Interactive Simulation (DIS)
standards version 2.03

√

Distributed Interactive Simulation (DIS)
standards version 2.04

√

 Networking
Protocol

UDP/IP √

 Communication DR-19 √
Advance Range Telemetry (ARTM)
 Telemetry IRIG-106 √ √

IRIG-118 √ √

Table 4. Communication Services Relationship to TENA

TAFIM Categorization TENA Relationship
MAJOR SERVICE AREA: COMMUNICATIONS SERVICES

Mid and Base Service
Areas (Indented)

Adopted Standard or Specification Facility System
Architecture

Technical
Architecture

TBD

Application services
File transfer MIL-STD-2045-17504 (FTP) √
Remote file access OSF DCE 1.1: DFS √
Message ANSI/IEEE 1224.1 (X.400 E-mail API) √
transfer ACP 123 √
(Complementary) ACP 123 US SUPP-1 √
Terminal
emulation

MIL-STD-2045-17506 (Remote Login
Profile)

 √

Remote login MIL-STD-2045-17506 (Remote Login
Profile)

 √

Remote procedure
call

OSF DCE 1.1: RPC √

Directory services ITU-T X.500/01/09/11/18/19/20/21/25 √
(Complementary) ANSI/IEEE 1224.2 (Directory/Name

Space API)
 √

ISO 8822, 8823, 8326, 8327 √
MIL-STD-2045-17505 (DNS) (legacy
systems)

 √

Volume IV Technical Reference Architecture 145

Table 4. Communication Services Relationship to TENA (Cont’d)

TAFIM Categorization TENA Relationship
MAJOR SERVICE AREA: COMMUNICATIONS SERVICES

Mid and Base Service
Areas (Indented)

Adopted Standard or Specification Facility System
Architecture

Technical
Architecture

TBD

Addressing
(Alternative)

ITU-T X.500:1993 (OSI Directory (ISO
9594))

 √

ISO 8823, 8327 √
IEEE 802.2 (1992) √
MIL-STD-2045-14502-1A/4/5 (Internet
Transport Profile)

 √

Protocol for
interoperability in
heterogeneous
transaction
processing systems

ISO 10026-1, 2,3:1992 (OSI Distributed
Transaction Processing)

 √

Connection ISO 8823, 8327 √
establishment/
release

MIL-STD-2045-14502-1A/2/3 (Internet
Transport Profile)

 √

(Alternative) X/Open C303 (XAP) √
IEEE P1003.1g (POSIX protocol -
Independent Tranport Service)

 √

MIL-STD-2045-14503 (RFC 1006) √
Connectionless
service

ISO 9576/9548 (Connectionless
Presentation/Session Protocol)

 √

(Alternative) MIL-STD-2045-14502-1A/4 (Internet
Transport Profile)

 √

IEEE P1003.1g (POSIX protocol -
Independent Tranport Service)

 √

IEEE 802.2 Type I (1992) √
Translation
(Alternative)

RFC 1327/1495 (SMTP to X.400 gateway) √

MIL-STD-187-700A √
Transport services

Routing/Relay MIL-STD-2045-13501 √
Network gateways MIL-STD-188-105 (per MIL-STD-187-

700A)
 √

Network error
recovery

MIL-STD-2045-14502-1A/2/3 (Internet
Transport Profile)

 √

Network flow
control

MIL-STD-2045-14502-1A/2/3 (Internet
Transport Profile)

 √

Network
sequencing

MIL-STD-2045-14502-1A/2/3 (Internet
Transport Profile)

 √

Priority/
precedence

MIL-STD-2045-14502-1A (Internet
Transport Profile)

 √

Distributed timing
service

OSF DCE 1.1 √

Volume IV Technical Reference Architecture 146

Table 4. Communication Services Relationship to TENA (Cont’d)

TAFIM Categorization TENA Relationship
MAJOR SERVICE AREA: COMMUNICATIONS SERVICES

Mid and Base Service
Areas (Indented)

Adopted Standard or Specification Facility System
Architecture

Technical
Architecture

TBD

Multicast ITU-T X.6 (Multicast) √
(Alternative) MIL-STD-2045-14502-1A (Internet

Transport Profile)
 √

Subnetwork technologies
CSMA/CD MIL-STD-187-700A √
(Alternative) MIL-STD-2045-14502-4/5 (Internet

Transport Profile)
 √

Token bus MIL-STD-187-700A √
Token ring MIL-STD-187-700A √
Distributed queue
dual bus (DQDB)

MIL-STD-187-700A √

FDDI (Fiber optic) MIL-STD-187-700A √
Integrated services
digital networks
(ISDN)

MIL-STD-187-700A √

LAPB MIL-STD-2045-14502-2 (Internet
Transport Profile)

 √

DDN X.25 MIL-STD-2045-14502-3 (Internet
Transport Profile)

 √

Frame relay MIL-STD-187-700A √
Asynchronous
transfer mode
(ATM)

MIL-STD-187-700A √

Combat net radio
digital subnetwork

MIL-STD-188-220A (Digital Message
Transfer Device (DMTD)

 √

(Complementary) MIL-STD-2045-14502-6A (Internet
Transport Profile)

 √

Secondary imagery
transmission

MIL-STD-2045-44500 √

Volume IV Technical Reference Architecture 147

Table 5 – Distributed Computing Services Relationship to TENA

TAFIM Categorization TENA Relationship
MAJOR SERVICE AREA: DISTRIBUTED COMPUTING
SERVICES
Mid and Base Service
Areas (Indented)

Adopted Standard or Specification Facility System
Architecture

Technical
Architecture

TBD

Client/server
Threads
(Alternative)

IEEE 1003.1c (Threads Extension to
POSIX)

 √

OSF DCE 1.1: Threads √
Remote procedure
call

OSF DCE 1.1: RPC √

Distributed file
service

OSF DCE 1.1: DFS √

Naming services OSF DCE 1.1: Cell Directory Service /
Global Directory Service

 √

Distributed timing
service

OSF DCE 1.1: DTS √

Object services
Object request
broker

OMG CORBA 2.0 √

Remote access
File transfer MIL-STD-2045-17504 (FTP) √
Remote login MIL-STD-2045-17506 (Remote Login

Profile)
 √

Remote data access ISO/IEC 9579-1,2:1993 (RDA) √

Volume IV Technical Reference Architecture 148

Table 6. Data Interchange Services Relationship to TENA

TAFIM Categorization TENA Relationship
MAJOR SERVICE AREA: DATA INTERCHANGE
SERVICES
Mid and Base Service
Areas (Indented)

Adopted Standard or Specification Facility System
Architecture

Technical
Architecture

TBD

Characters and symbols
Font information
exchange

ISO 9541-1,2,3:1991-94 (Font
Information Interchange

 √

Hardware applications
External data
representation

ITU-T X.409 (XDR for use with X.400) √

Circuit design data
exchange

NIST FIPS PUB 172 (VHDL) √

Bar coding MIL-STD-1189B (Standard DoD Bar
Code Symbology)

 √

Physical interface
(Alternative)

NIST FIPS PUB 22-1 (Synchronous
Signalling Rates between Data Terminal
and Data Communication Equipment)

 √

NIST FIPS PUB 100-1 (DTE/DCE
Interface)

 √

NIST FIPS PUB 166 (4800/9600 bps 2-
wire duplex modems)

 √

NIST FIPS PUB 167 (9600 bps four-wire
duplex modems)

 √

NIST FIPS PUB 168 (12000/14400 bps 4-
wire duplex modem)

 √

NIST FIPS PUB 169 (Error correction in
modems)

 √

NIST FIPS PUB 170 (Data compression in
V.42 modems)

 √

PCMCIA PC Card Standard, Release 2.1 √
Optical digital technologies

Read-only optical
discs

ISO 9660:1988 (Volume/file structure for
CD-ROM)

 √

Write-once optical
discs

ISO/IEC 9171-1:1990 (Unrecorded
130mm WORM)

 √

(Complementary
by size)

ISO/IEC 9171-2:1990 (Recording format
for 130mm WORM)

 √

ANSI X3.191-1991 (130mm WORM) √
ANSI X3.211-1992 (130mm WORM) √
ANSI X3.214-1992 (130mm WORM) √
ISO/IEC 11560:1992 (130mm WORM
using Magneto-Optical Effect)

 √

ANSI X3.220-1992 (130mm WORM
using Magneto-Optical Effect)

 √

Volume IV Technical Reference Architecture 149

Table 6. Data Interchange Services Relationship to TENA (Cont’d)

TAFIM Categorization TENA Relationship
MAJOR SERVICE AREA: DATA INTERCHANGE
SERVICES
Mid and Base Service
Areas (Indented)

Adopted Standard or Specification Facility System
Architecture

Technical
Architecture

TBD

ISO/IEC 10885:1993 (356mm WORM) √
ANSI X3.200-1992 (356mm WORM) √

Rewritable optical
discs

ISO 10900:1992 (90mm Optical Disk,
Rewritable and Read Only)

 √

(Complementary
by size)

ISO 10089:1991 (130mm Rewritable
Optical Disk)

 √

ANSI X3.212-1992 (130mm Rewritable
Optical Disk Using Magneto-Optical
Effect)

 √

Document interchange
Document MIL-PRF-28001 (CALS SGML) √
exchange
(Alternative)

NIST FIPS PUB 152 (SGML) √

Custom definition
of document types

NIST FIPS PUB 152 (SGML) √

Electronic forms
interchange

JIEO-E-2300 (Electronic Forms Systems) √

Technical data interchange
Vector graphics MIL-PRF-28000 (CALS IGES) √
data NIST FIPS PUB 177 (IGES) √
interchange MIL-PRF-28003 (CALS CGM) √
(Alternative) MIL-STD-2301A (NITFS CGM) √

NIST FIPS PUB 128-1 (CGM) √
Product data MIL-PRF-28000 (CALS IGES) √
nterchange NIST FIPS PUB 177 (IGES) √
(Alternative on ISO/IEC 10303:1994 (STEP) √
CALS) MIL-STD-1840B (Automated Interchange

of Technical Information (CALS))
 √

Business data
interchange

NIST FIPS PUB 161-1 (EDI) √

Raster/image data interchange
Raster data MIL-PRF-28002 (CALS Raster) √
interchange NIST FIPS PUB 150 (Group 4 Facsimile) √
(Alternative) NIST FIPS PUB 158-1 (X-Windows, for

BDF)
 √

Image data MIL-STD-2500A (NITFS, v. 2.0) √
Interchange
Complementary)

MIL-HDBK-1300A (NITFS) √

Volume IV Technical Reference Architecture 150

Table 6. Data Interchange Services Relationship to TENA (Cont’d)

TAFIM Categorization TENA Relationship
MAJOR SERVICE AREA: DATA INTERCHANGE
SERVICES
Mid and Base Service
Areas (Indented)

Adopted Standard or Specification Facility System
Architecture

Technical
Architecture

TBD

DoD applications
Military logistics
and document

MIL-STD-1840B (Automated Interchange
of Technical Information (CALS)

 √

Support
(Alternative)

MIL-STD-498 (Software Development
and Documentation)

 √

MIL-STD-1388-2B (LSA Record) √
Geospatial data
exchange

MIL-STD-2407 (Vector Product Format) √

(Alternative) MIL-STD-2401 (World Geodetic System) √
STANAG 3809 (Digital Terrain Elevation
Data)

 √

STANAG 7074 (Digital Geographic
Information Exchange Standard
(DIGEST))

 √

NIST FIPS PUB 173-1 (Spatial Data
Transfer Standard)

 √

MIL-STD-2411 (Raster Product Format) √
Symbology
graphics

MIL-STD-2525 (Common Warfighting
Symbology)

 √

Alternative) MIL-STD-2402 (Symbology Standard) √
WMO Document #49 (Meteorological
Services)

 √

MIL-STD-1295A (Helicopter Cockpit
Display Symbology)

 √

MIL-STD-1787B (Aircraft Display
Symbology)

 √

Exchange of
formatted military

Interim MIL-STD-6040 and CJCSM
6120.05 (MTF)

 √

Messages STANAG 5500 and ADATP 3 (MTF) √
(Alternative) MIL-STD-6011 (TADIL A and B) √

MIL-STD-6004 (TADIL C) √
STANAG 5501 and ADATP 31 (Link 11) √
STANAG 5504 and ADATP 4 (Link 4) √
STANAG 5511 and ADATP 11 (Link 11
and 11B)

 √

STANAG 5516 and ADATP 16 (Link 16) √

Volume IV Technical Reference Architecture 151

Table 6 Data Interchange Services Relationship to TENA (Cont’d)

TAFIM Categorization TENA Relationship
MAJOR SERVICE AREA: DATA INTERCHANGE
SERVICES
Mid and Base Service
Areas (Indented)

Adopted Standard or Specification Facility System
Architecture

Technical
Architecture

TBD

STANAG 5601 and ADATP 12 (Ship-
Shore-Ship Buffer)

 √

MIL-STD-2500A (NITFS, v. 2.0) √
Joint Pub 3-56.20 through 23 (Multi-
TADIL Operating Procedure)

 √

JIEO Multi-TADIL Data
Extraction/Reduction Guide

 √

JTIDS TIDP-TE (TADIL J) √
Interim JTIDS Message Specification
(IJMS) Decision Paper 4 and 5

 √

IJMS Decision Paper 6 (IJMS SOP) √
MIL-STD-6013 (ATDL-1) √
Variable Message Format (VMF) TIDP-
TE

 √

Tactical
communications

MIL-STD-2045-44500 (TACO2 for the
NITFS)

 √

(Alternative) MIL-STD-188-203A-1 (TADIL A) √
MIL-STD-188-212 (TADIL B) √
MIL-STD-188-203-3 (TADIL C) √
MIL-STD-188-220 (Digital Message
Transfer Device (DMTD)

 √

Continuous
Acquisition and

MIL-STD-1840B (Automated Interchange
of Technical Information (CALS)

 √

Life-Cycle Support
(CALS)

MIL-HDBK-59B (CALS Implementation
Guide)

 √

(Complementary) MIL-M-87268 (IETM General) √
MIL-D-87269 (Database Revisable IETM) √
MIL-Q-87270 (IETM Quality Assurance) √
MIL-STD-974 (Contractor Integrated
Technical Information Service - CITIS)

 √

Compression
Text and data
compression

X/Open C436:1994 (Commands and
Utilities)

 √

Still image
compression

NIST FIPS PUB 147 (Group 3
Compression)

 √

(Alternative) NIST FIPS PUB 148 (General Facsimile) √
NIST FIPS PUB 150 (Group 4 Facsimile) √

Volume IV Technical Reference Architecture 152

Table 6 – Data Interchange Services Relationship to TENA (Cont’d)

TAFIM Categorization TENA Relationship
MAJOR SERVICE AREA: DATA INTERCHANGE
SERVICES
Mid and Base Service
Areas (Indented)

Adopted Standard or Specification Facility System
Architecture

Technical
Architecture

TBD

ITU-T T.4-1988 (Group 3 Compression) √
ITU-T T.6-1988 (Group 4 Compression) √
ITU-T T.81-1993 (JPEG) √
MIL-STD-188-196 (NITFS Bi-Level) √
MIL-STD-188-197A (NITFS ARIDPCM) √
MIL-STD-188-198A (NITFS JPEG) √
MIL-STD-188-199 (NITFS Vector
Quantization)

 √

ISO/IEC 10918-1 (JPEG) √
Motion image
compression

ISO 11172-1,2,3:1993 (MPEG) √

Table 7– Data Management Services Relationship to TENA

TAFIM Categorization TENA Relationship
MAJOR SERVICE AREA: DATA MANAGEMENT
SERVICES
Mid and Base Service
Areas (Indented)

Adopted Standard or Specification Facility System
Architecture

Technical
Architecture

TBD

Database management system
Basic database NIST FIPS PUB 127-2 (SQL) √
services
(Complementary)

NIST FIPS PUB 193 (SQL Environments) √

ndex sequential
access

X/Open D010:1990 (ISAM Developers'
Specification)

 √

(Complementary) X/Open C215:1992 (Data Management,
Issue 3: ISAM)

 √

Multidatabase APIs X/Open P303:1993 (SAG Call Level
Interface)

 √

Database
administration

DoDD 8320.1 (DoD Data Administration) √

Electronic forms JIEO-E-2300 (Electronic Forms Systems) √
Data dictionary/directory services

Data dictionary NIST FIPS PUB 156 (IRDS) √

Volume IV Technical Reference Architecture 153

Table 7. Data Management Services Relationship to TENA (Cont’d)

TAFIM Categorization TENA Relationship
MAJOR SERVICE AREA: DATA MANAGEMENT
SERVICES
Mid and Base Service
Areas (Indented)

Adopted Standard or Specification Facility System
Architecture

Technical
Architecture

TBD

Transaction processing
Protocol for
heterogeneous
interoperability

ISO 10026-1,2,3:1992 (OSI Distributed
Transaction Processing)

 √

Transaction
manager-resource
manager interface

X/Open C193:1992 (XA Specification) √

Transaction
demarcation

X/Open P209:1992 (TX Specification) √

Transaction X/Open S423:1994 (XA+ Specification) √
manager to
communications

X/Open P306:1993 (XATMI
Specification)

 √

manager interface
(Complementary)

X/Open P305:1993 (TxRPC Specification) √

Distributed
queuing

IEEE P1003.15 (POSIX Batch
Extensions)

 √

Table 8 – Graphics Services Relationship to TENA

TAFIM Categorization TENA Relationship
MAJOR SERVICE AREA: GRAPHICS SERVICES
Mid and Base Service
Areas (Indented)

Adopted Standard or Specification Facility System
Architecture

Technical
Architecture

TBD

Raster graphics
Raster data MIL-PRF-28002 (CALS Raster) √
Interchange
(Alternative)

NIST FIPS PUB 150 (Group 4 Facsimile) √

NIST FIPS PUB 158-1 (X-Windows, for
BDF)

 √

Still image
compression

NIST FIPS PUB 147 (Group 3
Compression)

 √

(Alternative) NIST FIPS PUB 148 (General Facsimile) √
NIST FIPS PUB 150 (Group 4 Facsimile) √
ITU-T T.4-1988 (Group 3 Compression) √
ITU-T T.6-1988 (Group 4 Compression) √

Volume IV Technical Reference Architecture 154

Table 8. Graphics Services Relationship to TENA (Cont’d)

TAFIM Categorization TENA Relationship
MAJOR SERVICE AREA: GRAPHICS SERVICES
Mid and Base Service
Areas (Indented)

Adopted Standard or Specification Facility System
Architecture

Technical
Architecture

TBD

ITU-T T.81-1993 (JPEG) √
MIL-STD-188-196 (NITFS Bi-Level) √
MIL-STD-188-197A (NITFS ARIDPCM) √
MIL-STD-188-198A (NITFS JPEG) √
MIL-STD-188-199 (NITFS Vector
Quantization)

 √

ISO/IEC 10918-1 (JPEG) √
Vector graphics

Vector graphics NIST FIPS PUB 153 (PHIGS) √
API
(Complementary)

ISO/IEC 9592-4:1992 (PHIGS PLUS) √

Vector graphics MIL-PRF-28000 (CALS IGES) √
data interchange NIST FIPS PUB 177 (IGES) √

(Alternative) MIL-PRF-28003 (CALS CGM) √
MIL-STD-2301A (NITFS CGM) √
NIST FIPS PUB 128-1 (CGM) √

Device interfaces
Device interface
API

ISO/IEC 9636-1..6:1991 (CGI) √

Table 9. Internationalization Services Relationship to TENA

TAFIM Categorization TENA Relationship
MAJOR SERVICE AREA: INTERNATIONALIZATION
SERVICES
Mid and Base
Service Areas
(Indented)

Adopted Standard or Specification Facility System
Architecture

Technical
Architecture

TBD

Character set and data representation
Coded character
sets

ISO 6937:1994 (Coded Character Sets
for Text Communication)

 √

7-Bit coded
character sets

NIST FIPS PUB 1-2 (Code for
Information Interchange)

 √

(Complementary) ISO 646:1991 (ISO 7-Bit Coded
Character Set for Information
Exchange)

 √

8-Bit coded
character sets

ISO 4873:1991 (ISO 8-Bit Code for
Information Interchange)

 √

8-Bit single byte
character sets

ISO 8859:1989 (ISO 8-Bit Single-Byte
Coded Graphic Character Sets)

 √

Volume IV Technical Reference Architecture 155

Table 9. Internationalization Services Relationship to TENA (Cont’d)

TAFIM Categorization TENA Relationship
MAJOR SERVICE AREA: INTERNATIONALIZATION
SERVICES
Mid and Base
Service Areas
(Indented)

Adopted Standard or Specification Facility System
Architecture

Technical
Architecture

TBD

Control functions ISO 6429:1992 (Control Functions for
ISO 7-Bit and 8-bit Coded Character
Sets)

 √

Code extension
techniques

ISO 2022:1986 (ISO 7-Bit and 8-Bit
Coded Character Sets - Code Extension
Techniques)

 √

Universal character
sets

ISO 10646-1:1993 (Universal Multiple-
Octet Coded Character Set)

 √

Currency and funds
representation

ISO 4217:1990 (Codes for the
Representation of Currencies and
Funds)

 √

Date and time
representation

NIST FIPS PUB 4-1 (Representation of
Calendar Date and Ordinal Date)

 √

(Complementary) NIST FIPS PUB 58-1 (Representation of
Local Time of Day)

 √

NIST FIPS PUB 59 (Representations of
Universal Time, Local Time
Differentials, and US Time Zone
References)

 √

Country name
representation

TBD

Representation of
human sexes

TBD

Representation of
names of languages

TBD

Cultural convention services
Numerical value
representation

TBD

Customization to
local norms

X/Open G304 (Internationalisation
Guide, Version 2)

 √

(Complementary) DOD HCI Style Guide √
Natural language support services

Keyboard device
layout

ISO 9995-1..8:1994 (Keyboard Device
Layout)

 √

Related standards and programs
Character set
registration

TBD

Volume IV Technical Reference Architecture 156

Table 10. Operating System Services Relationship to TENA

TAFIM Categorization TENA Relationship
MAJOR SERVICE AREA: OPERATING SYSTEM
SERVICES
Mid and Base Service
Areas (Indented)

Adopted Standard or Specification Facility System
Architecture

Technical
Architecture

TBD

Kernel operations
File management NIST FIPS PUB 151-2 (POSIX.1) √
services
(Complementary)

IEEE 1003.1b:1993 (POSIX Real-Time
Extensions)

 √

Input/output NIST FIPS PUB 151-2 (POSIX.1) √
control
(Complementary)

IEEE 1003.1b:1993 (POSIX Real-Time
Extensions)

 √

System operator NIST FIPS PUB 151-2 (POSIX.1) √
services
(Complementary)

IEEE 1003.1b:1993 (POSIX Real-Time
Extensions)

 √

Process NIST FIPS PUB 151-2 (POSIX.1) √
management and
core operating
system services
(Complementary)

IEEE 1003.1b:1993 (POSIX Real-Time
Extensions)

 √

Environment NIST FIPS PUB 151-2 (POSIX.1) √
services
(Complementary)

IEEE 1003.1b:1993 (POSIX Real-Time
Extensions)

 √

Hardware error NIST FIPS PUB 151-2 (POSIX.1) √
and event
conditions
(Complementary)

IEEE 1003.1b:1993 (POSIX Real-Time
Extensions)

 √

System resource
limits

NIST SP 500-224 (OIW SIAs for OSEs) √

Message queues IEEE 1003.1b:1993 (POSIX Real-Time
Extensions)

 √

Login services X/Open C434, C435, C436 (Single UNIX
Specification)

 √

Storage device
management

OSF DCE 1.1: DFS √

Threads interface OSF DCE 1.1: Threads √
(Alternative) IEEE 1003.1c (POSIX Threads Extension) √
Threads extension
language binding

NIST SP 500-224 (OIW SIAs for OSEs) √

Kernal language
bindings

IEEE 1003.1b:1993, 1003.1g √

(Alternatives NIST FIPS PUB 151-2 (POSIX.1) √
complementary to
FIPS 151-2)

IEEE 1003.5-1992 (POSIX Ada Language
Interfaces)

 √

Volume IV Technical Reference Architecture 157

Table 10. Operating System Services Relationship to TENA (Cont’d)

TAFIM Categorization TENA Relationship
MAJOR SERVICE AREA: OPERATING SYSTEM
SERVICES
Mid and Base Service
Areas (Indented)

Adopted Standard or Specification Facility System
Architecture

Technical
Architecture

TBD

IEEE 1003.9 (POSIX FORTRAN
Binding)

 √

Media handling
Backup and NIST FIPS PUB 151-2 (POSIX.1) √
restore
(Complementary)

NIST FIPS PUB 189 (POSIX.2) √

Floppy disk format
and handling

NIST FIPS PUB 189 (POSIX.2) √

Data interchange
format

MIL-STD-2045-14502-1A/2/3 (Internet
Transport Profile)

 √

Network
sequencing

MIL-STD-2045-14502-1A/2/3 (Internet
Transport Profile)

 √

Shell and utilities
Commands and
utilities

NIST FIPS PUB 189 (POSIX.2) √

Print NIST FIPS PUB 189 (POSIX.2) √
management
(Alternative)

ISO 10175 (Document Printing
Application)

 √

Language bindings
to POSIX.2

NIST FIPS PUB 189 (POSIX.2) √

Shell programming
language

NIST FIPS PUB 189 (POSIX.2) √

User-oriented
commands and
utilities

NIST FIPS PUB 189 (POSIX.2) √

File and program
editing services

NIST FIPS PUB 189 (POSIX.2) √

Batch scheduling NIST FIPS PUB 189 (POSIX.2) √
Real time extensions

Memory NIST FIPS PUB 151-2 (POSIX.1) √
management
(Complementary)

IEEE 1003.1b:1993 (POSIX Real-Time
Extensions)

 √

Scheduling
(Complementary)

IEEE 1003.1b:1993 (POSIX Real-Time
Extensions)

 √

NIST FIPS PUB 151-2 (POSIX.1) √
Semaphores IEEE 1003.1b:1993 (POSIX Real-Time

Extensions)
 √

Asynchronous I/O IEEE 1003.1b:1993 (POSIX Real-Time
Extensions)

 √

Volume IV Technical Reference Architecture 158

Table 10. Operating System Services Relationship to TENA (Cont’d)

TAFIM Categorization TENA Relationship
MAJOR SERVICE AREA: OPERATING SYSTEM
SERVICES
Mid and Base Service
Areas (Indented)

Adopted Standard or Specification Facility System
Architecture

Technical
Architecture

TBD

Asynchronous
event notification

IEEE 1003.1b:1993 (POSIX Real-Time
Extensions)

 √

Synchronized I/O IEEE 1003.1b:1993 (POSIX Real-Time
Extensions)

 √

Real time file
system

IEEE 1003.1b:1993 (POSIX Real-Time
Extensions)

 √

POSIX.1b
language bindings

IEEE 1003.1b:1993 (POSIX Real-Time
Extensions)

 √

Fault management services
Fault management NMF Omnipoint 1 √

Clock/calendar services
Clocks and timers IEEE 1003.1b:1993 (POSIX Real-Time

Extensions)
 √

Real time timers IEEE 1003.1b:1993 (POSIX Real-Time
Extensions)

 √

Distributed timing
service

OSF DCE 1.1: DTS √

Operating system object services
Object request
broker

CORBA Specification Rev. 2.0, 1994 √

Table 11. Software Engineering Services Relationship to TENA

TAFIM Categorization TENA Relationship
MAJOR SERVICE AREA: SOFTWARE ENGINEERING
SERVICES
Mid and Base Service
Areas (Indented)

Adopted Standard or Specification Facility √ Technical
Architecture

TBD

CASE tools and environments
Software
development
environment

ANSI/IEEE 1209-1992 (Evaluation and
Selection of CASE Tools)

 √

Specialized
language and

ISO/IEC 9945-2:1993 (POSIX, part 2:
Shell and Utilities)

 √

compiler tools
(Alternative)

X/Open C436:1994 (Commands and
Utilities)

 √

Volume IV Technical Reference Architecture 159

Table 11. Software Engineering Services Relationship to TENA (Cont’d)

TAFIM Categorization TENA Relationship
MAJOR SERVICE AREA: SOFTWARE ENGINEERING
SERVICES
Mid and Base Service
Areas (Indented)

Adopted Standard or Specification Facility System
Architecture

Technical
Architecture

TBD

CASE tools and environments
Software
development
environment

ANSI/IEEE 1209-1992 (Evaluation and
Selection of CASE Tools)

 √

Specialized
language and

ISO/IEC 9945-2:1993 (POSIX, part 2:
Shell and Utilities)

 √

compiler tools
(Alternative)

X/Open C436:1994 (Commands and
Utilities)

 √

Software life cycle
processes

[Pending completion of IEEE 1498/EIA
640, MIL-STD-498 is recommended for
use subject to Agency/Service policy.
ISO/IEC DIS 12207 Software Life Cycle
Processes is currently in the international
standardization process.]

[In light of DoD's new policy on MIL-
STDs, MIL-STD-498 is in the process of
becoming an IEEE standard.]

 √

Software life cycle
processes

MIL-STD-498 (Software Development
and Documentation)

 √

Configuration
management

ANSI/IEEE 828-1990 (Software
Configuration Management Plans)

 √

(Complementary) ANSI/IEEE 1042-1987 (Guide to Software
Configuration Management)

 √

MIL-STD-498 (Software Development
and Documentation)

 √

Documentation MIL-STD-498 (Software Development
and Documentation)

 √

Joint reviews ANSI/IEEE 1028-1988 (Software Reviews
and Audits)

√

(Complementary) MIL-STD-498 (Software Development
and Documentation)

√

Software
requirements

ANSI/IEEE 830-1984 (Guide to Software
Requirements Specifications)

 √

(Complementary) MIL-STD-498 (Software Development
and Documentation)

 √

Software design
Complementary)

ANSI/IEEE 1016-1987 (Recommended
Practice for Software Design Descriptions)

 √

ANSI/IEEE 1016.1-1993 (Guide for
Software Design Descriptions)

 √

ANSI/IEEE 990-1987 (Recommended
Practices for Ada as a Program Design
Language)

 √

Volume IV Technical Reference Architecture 160

Table 11. Software Engineering Services Relationship to TENA (Cont’d)

TAFIM Categorization TENA Relationship
MAJOR SERVICE AREA: SOFTWARE ENGINEERING
SERVICES
Mid and Base Service
Areas (Indented)

Adopted Standard or Specification Facility System
Architecture

Technical
Architecture

TBD

MIL-STD-498 (Software Development
and Documentation)

 √

Software
management

MIL-STD-498 (Software Development
and Documentation)

 √

indicators
(Complementary)

ISO/IEC 9126 (Quality Characteristics
and Guidelines for their Use)

 √

ANSI/IEEE 982.1-1988 (Standard
Dictionary of Measures to Produce
Reliable Software)

 √

ANSI/IEEE 982.2-1988 (Guide for the
Use of Standard Dictionary of Measures to
Produce Reliable Software)

 √

ANSI/IEEE 1045-1992 (Software
Productivity Metrics)

 √

ANSI/IEEE 1061-1992 (Software Quality
Metrics Methodology)

 √

Software testing
and product

ANSI/IEEE 829-1983/R1991 (Software
Test Documentation)

 √

evaluation
(Complementary)

ANSI/IEEE 1008-1987 (Software Unit
Testing)

 √

NIST FIPS PUB 132 (Guide for Software
Verification and Validation Plans)

 √

ANSI/IEEE 1012-1987 (Software
Verification and Validation Plans)

 √

ANSI/IEEE 1059-1993 (Guide for
Software Verification and Validation
Plans)

 √

MIL-STD-498 (Software Development
and Documentation)

 √

Software quality
assurance

ISO 9001:1987 (Model for Quality
Assurance)

 √

(Complementary -
by sponsor)

ISO 9000-3:1991 (Guidelines for
Application of ISO 9001)

 √

ANSI/IEEE 730.1-1989 (Software Quality
Assurance Plans)

 √

IEEE 1298-1992 (Software Quality
Management System)

 √

MIL-STD-498 (Software Development
and Documentation)

 √

Volume IV Technical Reference Architecture 161

Table 11. Software Engineering Services Relationship to TENA (Cont’d)

TAFIM Categorization TENA Relationship
MAJOR SERVICE AREA: SOFTWARE ENGINEERING
SERVICES
Mid and Base Service
Areas (Indented)

Adopted Standard or Specification Facility System
Architecture

Technical
Architecture

TBD

Software problem
categories/

IEEE 1044-1993 (Classification for
Software Anomalies)

 √

priorities
(Complementary)

MIL-STD-498 (Software Development
and Documentation)

 √

Software safety MIL-STD-882 (System Safety Program
Requirements)

 √

Software support
(Complementary)

MIL-STD-498 (Software Development
and Documentation)

 √

ANSI/IEEE 1219-1993 (Software
Maintenance)

 √

Software
distribution

OSF DME: Distributed Services √

License
management

OSF DME: License Management √

Languages
Ada ISO/IEC 8652:1995 (Ada95) √
(Complementary) NIST FIPS PUB 119-1 (Ada95) √
C ANSI/ISO 9899: (C) √
(Complementary) NIST FIPS PUB 160 √
FORTRAN NIST FIPS PUB 69-1 (FORTRAN-77) √
(Alternative) ISO 1539:1990 (FORTRAN-90) √
COBOL NIST FIPS PUB 21-4 (COBOL) √

J OVIAL MIL-STD-1589C, Notice 1, 1994
(JOVIAL)

 √

MUMPS (aka M) NIST FIPS PUB 125-1 (MUMPS aka M) √
Bindings

Ada bindings ISO 9075:1992 (Binding to SQL) √
(Complementary) ISO/ANSI 9593-3:1990 (Binding to

PHIGS)
 √

IEEE 1003.5-1992 (POSIX Ada Language
Interfaces)

 √

IEEE 1003.5b (POSIX Ada Real Time
Binding)

 √

ANSI X3.168-1989 (Embedded SQL and
SQL Ada Module Extensions)

 √

NIST FIPS PUB 127-2 (SQL, for Ada
bindings)

 √

Volume IV Technical Reference Architecture 162

Table 12 – System Management Services Relationship to TENA

TAFIM Categorization TENA Relationship
MAJOR SERVICE AREA: SYSTEM MANAGEMENT
SERVICES
Mid and Base Service
Areas (Indented)

Adopted Standard or Specification Facility System
Architecture

Technical
Architecture

TBD

State management
Independent window

management
services

OSF Motif AES 1.2 √

Batch scheduling NIST FIPS PUB 189 (POSIX.2) √
Process NIST FIPS PUB 151-2 (POSIX.1) √
management and
core operating
system services
(Complementary)

IEEE 1003.1b:1993 (POSIX Real-Time
Extensions)

 √

System NIST SP 500-224 (OIW SIAs for OSEs) √
administration and
management APIs
(Alternative)

NMF Omnipoint 1 √

IEEE 1224 √
X/Open C206 (XMP) √

Scheduling
(Complementary)

IEEE 1003.1b:1993 (POSIX Real-Time
Extensions)

√

NIST FIPS PUB 151-2 (POSIX.1) √
User/Group management

User/Group IEEE P1387.3 √
identification
(Complementary)

IEEE 1003.1b:1993 (POSIX Real-Time
Extensions)

√

Configuration control
Software
configuration

ANSI/IEEE 828-1990 (Software
Configuration Management Plans)

 √

management
(Complementary)

ANSI/IEEE 1042-1987 (Guide to Software
Configuration Management)

 √

MIL-STD-498 (Software Development
and Documentation)

 √

Data dictionary NIST FIPS PUB 156 (IRDS) √
System
configuration

NMF Omnipoint 1 √

Network
configuration
management

NMF Omnipoint 1 √

Usage management and cost allocation
Accounting
management

NIST FIPS PUB 96 √

Volume IV Technical Reference Architecture 163

Table 13. System Management Services Relationship to TENA (Cont’d)

TAFIM Categorization TENA Relationship
MAJOR SERVICE AREA: SYSTEM MANAGEMENT
SERVICES
Mid and Base Service
Areas (Indented)

Adopted Standard or Specification Facility System
Architecture

Technical
Architecture

TBD

Performance management
Software
management

MIL-STD-498 (Software Development
and Documentation)

 √

indicators
(Complementary)

ISO/IEC 9126 (Quality Characteristics
and Guidelines for their Use)

 √

ANSI/IEEE 982.1-1988 (Standard
Dictionary of Measures to Produce
Reliable Software)

 √

ANSI/IEEE 982.2-1988 (Guide for the
Use of Standard Dictionary of Measures to
Produce Reliable Software)

 √

ANSI/IEEE 1045-1992 (Software
Productivity Metrics)

 √

ANSI/IEEE 1061-1992 (Software Quality
Metrics Methodology)

 √

Performance NIST FIPS PUB 144 √
management
(Complementary)

NMF Omnipoint 1 √

Network flow
control

MIL-STD-2045-14502-1A/2/3 (Internet
Transport Profile)

 √

Network
sequencing

MIL-STD-2045-14502-1A/2/3 (Internet
Transport Profile)

 √

Communication of
management
information

MIL-STD-2045-38000 √

Input/output NIST FIPS PUB 151-2 (POSIX.1) √
control
(Complementary)

IEEE 1003.1b:1993 (POSIX Real-Time
Extensions)

 √

Event NMF Omnipoint 1 √
management
(Alternative)

NIST SP 500-224 (OIW SIAs for OSEs) √

Fault management
Software safety MIL-STD-882 (System Safety Program

Requirements)
 √

Network error
recovery

MIL-STD-2045-14502-1A/2/3 (Internet
Transport Profile)

 √

Fault management NMF Omnipoint 1 √
Storage device
management

OSF DCE 1.1: DFS √

Volume IV Technical Reference Architecture 164

Table 13. System Management Services Relationship to TENA (Cont’d)

TAFIM Categorization TENA Relationship
MAJOR SERVICE AREA: SYSTEM MANAGEMENT
SERVICES
Mid and Base Service
Areas (Indented)

Adopted Standard or Specification Facility System
Architecture

Technical
Architecture

TBD

Backup and NIST FIPS PUB 151-2 (POSIX.1) √
restore
(Complementary)

NIST FIPS PUB 189 (POSIX.2) √

Hardware error NIST FIPS PUB 151-2 (POSIX.1) √
and event
conditions
(Complementary)

IEEE 1003.1b:1993 (POSIX Real-Time
Extensions)

 √

Error and event
logging

NMF Omnipoint 1 √

Other management services
Database
administration

DoDD 8320.1 (DoD Data Administration) √

Floppy disk format
and handling

NIST FIPS PUB 189 (POSIX.2) √

Print NIST FIPS PUB 189 (POSIX.2) √
management
(Complementary)

ISO 10175 (Document Printing
Application)

 √

Table 14 – Security Services Relationship to TENA

TAFIM Categorization TENA Relationship
MAJOR SERVICE AREA: SECURITY SERVICES
Mid and Base Service
Areas (Indented)

Adopted Standard or Specification Facility System
Architecture

Technical
Architecture

TBD

Architectures and applications
System DoD 5200.28-STD (TCSEC) √
development DoD NCSC-TG-005, v1 (TNI) √
security
(Complementary)

DoD NCSC-TG-006, v1 (CM in Trusted
Systems)

 √

DoD NCSC-TG-021, v1 (TDI) √
OSF DCE 1.1: Security √
NIST FIPS PUB 151-2 (POSIX.1) √
MIL-STD-498 (Software Development
and Documentation)

Volume IV Technical Reference Architecture 165

Table 14 – Security Services Relationship to TENA (Cont’d)

TAFIM Categorization TENA Relationship
MAJOR SERVICE AREA: SECURITY SERVICES
Mid and Base Service
Areas (Indented)

Adopted Standard or Specification Facility System
Architecture

Technical
Architecture

TBD

Database security NIST FIPS PUB 127-2:1993 (SQL) √
NIST FIPS PUB 156 (IRDS) √

Network security DoD 5200.28-STD (TCSEC) √
architecture DoD NCSC-TG-005, v1 (TNI) √
(Complementary) ISO 10181-2:1993 (OSI Authentication

Framework)
 √

NIST SP 500-224, pt 12,13 (OIW SIAs for
OSEs)

 √

ISO 10745:1993 (OSI Upper Layer
Security Model)

 √

ISO 11586-1:1994 (GULS, part 1) √
Operating system DoD 5200.28-STD (TCSEC) √
Security
(Complementary)

DDS-2600-5502-87 (CMW Security
Requirements)

 √

DDS-2600-6243-92 (CMW Evaluation
Criteria)

 √

DDS-2600-6216-91 (CMW Labeling
Encoding Format)

 √

DDS-2600-6243-91 (CMW Labeling
Guidelines)

 √

NIST FIPS PUB 151-2 (POSIX.1) √
NIST FIPS PUB 112 (Password Usage) √

System management security
Privacy act
(Complementary)

PL 100-235 (Computer Security Act of
1987)

√

PL 93-579 (Privacy Act of 1974) √
Certification and
accreditation

DoD 5200.28-STD (TCSEC) √

Security risk DoD 5200.28-STD (TCSEC) √
management
(Complementary)

NIST FIPS PUB 191 (Guideline for LAN
Security)

 √

Security ISO 9595, AM4 (CMIS Access Control) √
Management
(Complementary)

ISO 10164-7 (System Management
Security Alarm Reporting)

 √

ISO 10164-8 (System Management
Security Audit Trail Function)

 √

ITU-T X.518 (OSI Directory-Distributed
Operations)

 √

DoD 5200.28-STD (TCSEC) √
ISO 9596-1 (CMIP) √
DoD NCSC-TG-005, v1 (TNI) √

Volume IV Technical Reference Architecture 166

Table 14 – Security Services Relationship to TENA (Cont’d)

TAFIM Categorization TENA Relationship
MAJOR SERVICE AREA: SECURITY SERVICES
Mid and Base Service
Areas (Indented)

Adopted Standard or Specification Facility System
Architecture

Technical
Architecture

TBD

DoD NCSC-TG-021, v1 (TDI) √
NMF Omnipoint 1 √
IEEE 1003.1b:1993 (POSIX Real-Time
Extensions)

 √

NIST FIPS PUB 151-2 (POSIX.1) √
Security
association and

NIUF ISDN Security Protocol 421
(SAMP)

 √

key management ISO 11586-1:1994 (GULS, part 1) √
(Complementary) ISO 11586-2 (GULS, part 2) √

ISO 11586-3 (GULS, part 3) √
NIST FIPS PUB 171 (Key Management
Using ANSI X9.17)

 √

Security audit DoD 5200.28-STD (TCSEC) √
(Complementary) DoD NCSC-TG-005, v1 (TNI) √

NMF Omnipoint 1 √
ISO 10164-8 (System Management
Security Audit Trail Function)

 √

Security alarm
reporting

ISO 10164-7 (System Management
Security Alarm Reporting)

(Complementary) NMF Omnipoint 1
Authentication

Personal DoD 5200.28-STD (TCSEC) √
authentication NIST FIPS PUB 112 (Password Usage) √
(Complementary) NIST FIPS PUB 48 (Automated Personal

ID)
 √

ISO 9594-8.2 (OSI Directory
Authentication Framework)

 √

Network
authentication

MIL-STD-2045-18500 (MHS Message
Security Protocol (MSP) Profile)

 √

(Complementary) ITU-T X.509 (OSI Directory
Authentication Framework)

 √

DoD NCSC-TG-005, v1 (TNI) √
NIST FIPS PUB 186 (DSS) √
NIST FIPS PUB 180-1 (SHS) √
ISO 8649 (OSI Service Definition for
ACSE)

 √

ISO 8650 (OSI Protocol Specification for
ACSE)

 √

ISO 11586-1:1994 (GULS, part 1) √
ISO 11586-2 (GULS, part 2) √
ISO 11586-3 (GULS, part 3) √
ISO 11586-4 (GULS, part 4) √

Volume IV Technical Reference Architecture 167

Table 14 – Security Services Relationship to TENA (Cont’d)

TAFIM Categorization TENA Relationship
MAJOR SERVICE AREA: SECURITY SERVICES
Mid and Base Service
Areas (Indented)

Adopted Standard or Specification Facility System
Architecture

Technical
Architecture

TBD

IEEE 802.10B-1992 (SILS Secure Data
Exchange)

 √

Entity
authentication

NIST FIPS PUB 113 (Computer Data
Authentication)

 √

(Complementary) DoD 5200.28-STD (TCSEC) √
ISO 9807 (Retail Message Authentication) √
ISO 9798-1 (Entity Authentication
Mechanism)

 √

ISO 9798-3 (Entity Authentication
Mechanism)

 √

Access control
System access DoD 5200.28-STD (TCSEC) √
control
(Complementary)

ISO 9595, AM4 (CMIS Access Control) √

Network access ISO 9595, AM4 (CMIS Access Control) √
control
(Complementary)

MIL-STD-2045-18500 (MHS Message
Security Protocol (MSP) Profile)

 √

DoD NCSC-TG-005, v1 (TNI) √
IEEE 802.10B-1992 (SILS Secure Data
Exchange)

 √

Confidentiality
Open systems DoD 5200.28-STD (TCSEC) √
confidentiality PL 93-579 (Privacy Act of 1974) √
(Complementary) PL 100-235 (Computer Security Act of

1987)
√

Data encryption NIST FIPS PUB 46-2 (DES) √
security NIST FIPS PUB 74 (Guidelines for DES) √
(Complementary) NIST FIPS PUB 81 (DES Modes of

Operation)
 √

NIST FIPS PUB 185 (EES) √
NIST FIPS PUB 140-1 (Security
Requirements for Cryptographic Modules)

 √

ISO 8372 (Modes of Operation for a 64-
Bit Block Cipher Algorithm)

 √

Traffic flow
confidentiality

ISO 11577:1994 (NLSP) √

Volume IV Technical Reference Architecture 168

Table 14 – Security Services Relationship to TENA (Cont’d)

TAFIM Categorization TENA Relationship
MAJOR SERVICE AREA: SECURITY SERVICES
Mid and Base Service
Areas (Indented)

Adopted Standard or Specification Facility System
Architecture

Technical
Architecture

TBD

Integrity
Open systems DoD 5200.28-STD (TCSEC) √
integrity
(Complementary)

DoD NCSC-TG-021, v1 (TDI) √

Data integrity NIST FIPS PUB 46-2 (DES) √
techniques NIST FIPS PUB 74 (Guidelines for DES) √
(Complementary) NIST FIPS PUB 81 (DES Modes of

Operation)
 √

NIST FIPS PUB 185 (EES) √
NIST FIPS PUB 140-1 (Security
Requirements for Cryptographic Modules)

 √

ISO 8372 (Modes of Operation for a 64-
Bit Block Cipher Algorithm)

 √

NIST FIPS PUB 180-1 (SHS) √
NIST FIPS PUB 186 (DSS) √

Network integrity ISO 11586-1:1994 (GULS, part 1) √
Complementary) ISO 11586-4 (GULS, part 4) √

IEEE 802.10B-1992 (SILS Secure Data
Exchange)

 √

ITU-T X.500:1993 (OSI Directory (ISO
9594)

 √

Non-repudiation
Open systems non-
repudiation

MIL-STD-2045-18500 (MHS Message
Security Protocol (MSP) Profile)

 √

(Complementary) NIST FIPS PUB 186 (DSS) √
ISO 11586-1:1994 (GULS, part 1) √
ISO 11586-4 (GULS, part 4) √

Electronic
signature

NIST FIPS PUB 186 (DSS) √

Electronic hashing NIST FIPS PUB 180-1 (SHS) √
Availability

Detection and DoD 5200.28-STD (TCSEC) √
notification
(Complementary)

DoD NCSC-TG-005, v1 (TNI) √

Security DoD 5200.28-STD (TCSEC) √
recovery
(Complementary)

DoD NCSC-TG-005, v1 (TNI) √

Volume IV Technical Reference Architecture 169

Table 14 – Security Services Relationship to TENA (Cont’d)

TAFIM Categorization TENA Relationship
MAJOR SERVICE AREA: SECURITY SERVICES
Mid and Base Service
Areas (Indented)

Adopted Standard or Specification Facility System
Architecture

Technical
Architecture

TBD

Security labeling
User interface
security labeling

DoD 5200.28-STD (TCSEC) √

(Complementary) DoD HCI Style Guide, v. 3.0; TAFIM Vol.
8

 √

DDS-2600-6243-92 (CMW Evaluation
Criteria)

 √

DDS-2600-6243-91 (CMW Labeling
Guidelines)

 √

DDS-2600-6216-91 (CMW Labeling
Encoding Format)

 √

DoDIIS Style Guide √
Data DoD 5200.28-STD (TCSEC) √
management
security labeling

DDS-2600-6243-92 (CMW Evaluation
Criteria)

 √

(Complementary) DDS-2600-6243-91 (CMW Labeling
Guidelines)

 √

DDS-2600-6216-91 (CMW Labeling
Encoding Format)

 √

Data interchange DoD 5200.28-STD (TCSEC) √
security labeling
Complementary)

DDS-2600-6243-92 (CMW Evaluation
Criteria)

 √

DDS-2600-6243-91 (CMW Labeling
Guidelines)

 √

DDS-2600-6216-91 (CMW Labeling
Encoding Format)

 √

MIL-STD-2045-48501 (Common Security
Label (CSL)

 √

ITU-T X.411 (MHS Message Transfer
System: Abstract Service Definition and
Procedures)

 √

Graphics security DoD 5200.28-STD (TCSEC) √
labeling
(Complementary)

DDS-2600-6243-92 (CMW Evaluation
Criteria)

 √

DDS-2600-6243-91 (CMW Labeling
Guidelines)

 √

DDS-2600-6216-91 (CMW Labeling
Encoding Format)

 √

Data
communications

MIL-STD-2045-48501 (Common Security
Label (CSL))

 √

security labeling DoD 5200.28-STD (TCSEC) √

Volume IV Technical Reference Architecture 170

Table 14 – Security Services Relationship to TENA (Cont’d)

TAFIM Categorization TENA Relationship
MAJOR SERVICE AREA: SECURITY SERVICES
Mid and Base Service
Areas (Indented)

Adopted Standard or Specification Facility System
Architecture

Technical
Architecture

TBD

(Complementary) DDS-2600-6243-92 (CMW Evaluation
Criteria)

 √

DDS-2600-6243-91 (CMW Labeling
Guidelines)

 √

DDS-2600-6216-91 (CMW Labeling
Encoding Format)

 √

Operating system DoD 5200.28-STD (TCSEC) √
security labeling
(Complementary)

DDS-2600-6243-92 (CMW Evaluation
Criteria)

 √

DDS-2600-6243-91 (CMW Labeling
Guidelines)

 √

DDS-2600-6216-91 (CMW Labeling
Encoding Format)

 √

Distributed DoD 5200.28-STD (TCSEC) √
computing DoD NCSC-TG-005, v1 (TNI) √
security labeling DoD NCSC-TG-021, v1 (TDI) √
(Complementary) DDS-2600-6243-92 (CMW Evaluation

Criteria)
 √

DDS-2600-6243-91 (CMW Labeling
Guidelines)

 √

DDS-2600-6216-91 (CMW Labeling
Encoding Format)

 √

Table 15 – User Interface Services Relationship to TENA

TAFIM Categorization TENA Relationship
MAJOR SERVICE AREA: USER INTERFACE SERVICES
Mid and Base Service
Areas (Indented)

Adopted Standard or Specification Facility System
Architecture

Technical
Architecture

TBD

User Interface
Keyboard device
layout

ISO 9995-1..8:1994 (Keyboard Device
Layout)

 √

Graphical Client-Server Operations
Data stream
encoding

NIST FIPS PUB 158-1 (X-Windows) √

Data stream
interface

NIST FIPS PUB 158-1 (X-Windows) √

Subroutine
foundation library

NIST FIPS PUB 158-1 (X-Windows) √

Volume IV Technical Reference Architecture 171

Table 15 – User Interface Services Relationship to TENA (Cont’d)

TAFIM Categorization TENA Relationship
MAJOR SERVICE AREA: USER INTERFACE SERVICES
Mid and Base Service
Areas (Indented)

Adopted Standard or Specification Facility System
Architecture

Technical
Architecture

TBD

Raster data MIL-PRF-28002 (CALS Raster) √
interchange NIST FIPS PUB 150 (Group 4 Facsimile) √
(Alternative) NIST FIPS PUB 158-1 (X-Windows, for

BDF)
 √

User interface
management
system

NIST FIPS PUB 158-1 (X-Windows) √

Communication
between GUI client
applications

OSF Motif AES 1.2: ICCCM, v 1.0 √

Data interchange OSF Motif AES 1.2: ICCCM, v 1.0 √
format for GUI-
based applications
(Complementary)

NIST FIPS PUB 158-1 (X-Windows) √

Compound text
encoding

X/Open CTE, v1.1 √

X logical font
description

X/Open XLFD, v1.3 √

Object definition and management
3-D appearance NIST FIPS PUB 158-1 (X-Windows, for

PEX)
 √

GUI internationali-
zation support

X/Open G304:1993 (Internationalisation
Guide)

 √

Interchange format
for design tools

COSE Motif √

Application
programming
interfaces

IEEE 1295-1993 (Motif) √

Language bindings
for bit-mapped
GUIs

IEEE 1295-1993 (Motif) √

Style guide DoD HCI Style Guide, v. 3.0; TAFIM Vol.
8

 √

User interface
definition language

OSF Motif AES 1.2: UIDL √

Volume IV Technical Reference Architecture 172

Table 15 – User Interface Services Relationship to TENA (Cont’d)

TAFIM Categorization TENA Relationship
MAJOR SERVICE AREA: USER INTERFACE SERVICES
Mid and Base Service
Areas (Indented)

Adopted Standard or Specification Facility System
Architecture

Technical
Architecture

TBD

Window management
Independent
window
management
services

OSF Motif AES 1.2 √

Multiple displays OSF Motif AES 1.2 √
Style guide DoD HCI Style Guide, v. 3.0; TAFIM Vol.

8
 √

Drivability DoD HCI Style Guide, v. 3.0; TAFIM Vol.
8

 √

On-line help DoD HCI Style Guide, v. 3.0; TAFIM Vol.
8

 √

Commands,
menus, and dialog

DoD HCI Style Guide, v. 3.0; TAFIM Vol.
8

 √

Character-based user interface
Style guide DoD HCI Style Guide, v. 3.0; TAFIM Vol.

8
 √

Electronic forms JIEO-E-2300 (Electronic Forms Systems) √

Table 16. JTA Standards

Joint Technical Architecture Standards TENA Relationship
(Taken from the DoD JTA Version 1.0)

Facility System
Architecture

Technical
Architecture

TBD

2.2.2.1.2 USER INTERFACE SERVICES
Win32 APIs, Window Management and Graphics Device
Interface, Volume 1 Microsoft Win32 Programmers Reference
Manual, 1993, Microsoft Press

 √

X/Open C323, Common Desktop Environment (CDE) Version 1.0,
April 1995 production of documents which are intended for long-
term storage and electronic dissemination for viewing in multiple
formats.

 √

Volume IV Technical Reference Architecture 173

Table 16. JTA Standards (Cont’d)

Joint Technical Architecture Standards TENA Relationship
(Taken from the DoD JTA Version 1.0)

Facility System
Architecture

Technical
Architecture

TBD

2.2.2.1.3 DATA MANAGEMENT SERVICES √
Open Data Base Connectivity, ODBC 2.0 √

2.2.2.1.4 DATA INTERCHANGE SERVICES
See Section 4.x

2.2.2.1.4.1 Document interchange
ISO 8879: 1986, Standard Generalized Markup Language
(SGML), for the RFC-1866: 1995, Hypertext Mark-up Language
(HTML), Internet Version 2.0

 √

See Table 2-1

2.2.2.1.4.3 Geospatial Data Interchange
MIL-STD-2407, Interface Standard for Vector Product Format
(VPF)

 √

Defense Mapping Agency (DMA) DMA List of Products and
Services

 √

2.2.2.1.4.4 Imagery Data Interchange
ANSI/ISO 8632: 1992, Computer Graphics Metafile (CGM) as
profiled by FIPS 128 and MIL-STD-2301

 √

2.2.2.1.4.6 Audio Data Interchange
ISO/IEC 11172-1: 1993 - Encoding of moving pictures and
associated audio for digital storage media at up to about 1.5
Mbits/s -- Part 1: Systems

 √

ISO/IEC 11172-3: 1993 - Encoding of moving pictures and
associated audio for digital storage media at up to about 1.5
Mbits/s -- Part 3: Audio

 √

ISO/IEC 11172-3/Cor. 1: 1995 - Encoding of moving pictures and
associated audio for digital storage media at up to about 1.5
Mbits/s -- Part 3: Audio Technical Corrigendum

 √

ISO 13818-1: 1996 - Generic Coding of Moving Pictures and
Associated Audio Information - Part 1: Systems

 √

ISO 13818-3: 1995 - Generic Coding of Moving Pictures and
Associated Audio Information - Part 3: Audio

 √

Volume IV Technical Reference Architecture 174

Table 16. JTA Standards (Cont’d)

Joint Technical Architecture Standards TENA Relationship
(Taken from the DoD JTA Version 1.0)

Facility System
Architecture

Technical
Architecture

TBD

2.2.2.1.4.7 Video Data Interchange
ISO/IEC 11172-1: 1993 - Encoding of moving pictures and
associated audio for digital storage media at up to about 1.5
Mbits/s -- Part 1: Systems

 √

ISO/IEC 11172-1: 1993/Cor. 1:1995 Coding of moving pictures
and associated audio for digital storage media at up to about 1.5
Mbits/s -- Part 1: Systems Technical Corrigendum 1

 √

ISO/IEC 11172-2: 1993 Coding of moving pictures and associated
audio for digital storage media at up to about 1.5 Mbits/s -- Part 2
Video

 √

ISO 13818-1: 1996 - Generic Coding of Moving Pictures and
Associated Audio Information - Part 1: Systems

 √

ISO 13818-2: 1996 - Generic Coding of Moving Pictures and
Associated Audio Information - Part 2: Video

 √

2.2.2.1.4.8 Atmospheric Data Interchange
FM 92-X-GRIB - The WMO Format for the Storage of Weather
Product Information and the Exchange of Weather Product
Messages in Gridded Binary (GRIB) Form

 √

FM 94-X-BUFR - The WMO Binary Universal Format for
Representation (BUFR) of meteorological data

 √

Data Exchange Format (DEF) - Appendix 30 to the Tactical
Automated Weather Distribution System (TAWDS)/Integrated
Meteorological System (IMETS) Implementation Document for
Communication Information Data Exchange (CIDE)

 √

2.2.2.1.4.8 Oceanographic Data Interchange
FM 94-X-BUFR - The WMO Binary Universal Format for
Representation (BUFR) of oceanographic data

 √

2.2.2.1.5 Graphics Services
ISO 7942 as profiled by FIPS Pub 120-1 (change notice 1): 1991,
Graphical Kernel System (GKS) - for 2-D graphics

 √

ISO 9592: 1989, as profiled by FIPS Pub 153, Programmers
Hierarchical Interactive Graphics Systems (PHIGS) - for 3-D
graphics

 √

ISO/IEC 9636: 1994, Information Technology-Computer
Graphics-Interfacing (CGI) Techniques for Dialogue with
Graphics Devices

 √

Volume IV Technical Reference Architecture 175

Table 16. JTA Standards (Cont’d)

Joint Technical Architecture Standards TENA Relationship
(Taken from the DoD JTA Version 1.0)

Facility System
Architecture

Technical
Architecture

TBD

2.2.2.1.7 Operating System Services
ISO 9945-1: 1990, Information Technology - Portable Operating
System Interface for Computer Environments (POSIX) - Part 1:
System Application Program Interface (API) [C language]

 √

ISO 9945-2: 1993, Information Technology - Portable Operating
System Interface for Computer Environments (POSIX) - Part 2:
Shell and Utilities

 √

IEEE 1003.2d: 1994, POSIX - Part 2: Shell and Utilities -
Amendment: Batch Environment

 √

IEEE 1003.1i: 1995, POSIX - Part 1: System Application Program
Interface (API) Amendment: Technical Corrigenda to Real-time
Extension [C Language]

 √

Win32 APIs, Window Management and Graphics Device
Interface, Volume 1 Microsoft Win32 Programmers Reference
Manual, 1993

 √

2.2.2.2.1 Internationalization Services
ISO/IEC 8859-1: 1987, Information Processing - 8-Bit Single-Byte
Coded Character Sets - Part 1: Latin Alphabet No. 1

 √

ISO/IEC 10646-1: 1993, Information Technology - Universal
Multiple-Octet Coded Character Set (UCS) - Part 1: Architecture
and Basic Multilingual Plane

 √

2.2.2.2.4.1 Remote Procedure Computing
OSF - DCE Remote Procedure Call (RPC), Version 1.1, 1994 √
OSF - DCE Time Services, Version 1.1, 1994 √
OSF - DCE Directory Services, Version 1.1, 1994 √

2.2.2.2.4.2 Distributed Object Computing
OMG - The Common Object Request Broker: Architecture and
Specification, Version 2: July 1995

 √

OMG - CORBA services: Common Object Services Specification,
March 1996

 √

OMG - CORBA facilities: Common Object Facilities Architecture,
November 1995

 √

2.3.3 Data Management
SQL3 √
ODMG-9x standard √
ISO 9075-3, 1995 Call Level Interface √
DIS 9075-4, Database Language, Part 4: Persistent Stored Modules
(SQL/PSM)

 √

Open Data Base Connectivity (ODBC) 3.0 √

Volume IV Technical Reference Architecture 176

Table 16. JTA Standards (Cont’d)

Joint Technical Architecture Standards TENA Relationship
(Taken from the DoD JTA Version 1.0)

Facility System
Architecture

Technical
Architecture

TBD

2.3.4 Data Interchange
ISO 13818-4, MPEG-2 is an interchange format used for full
motion video and associated audio data for data rates of 1.5 Mbits/s
- 6.0 Mbits/s

 √

HTML 3.2 √
MIL-STD-2405, Datums, Coordinates and Grids √
MIL-STD-600001, Accurace √

2.3.5 Data Interchange
P1003.1d - Real-Time Extensions √
P1003.1h - Services for Reliable, Available, Serviceable Systems √
P1003.5b - Ada Bindings for Real-Time √
P1003.2l - Real-Time Distributed Systems Communication √
P1003.1j - Advanced Real-Time Extensions √

3.2.1.1 Host Standards
IAB Standard 3/RFC-1122/RFC-1123, Host Requirements, October
1989

 √

3.2.1.1.1 Application Support Standards

3.2.1.1.1.1 Electronic Mail
ACP 123 U.S. Supplement No. 1, Common Messaging Strategy
and Procedures, November 1995

 √

3.2.1.1.1.2 Directory Services

3.2.1.1.1.2.2 Domain Name System (DNS)
IAB Standard 13/RFC-1034/RFC-1035, Domain Name System,
November 1987

 √

3.2.1.1.1.3 File Transfer
IAB Standard 9/RFC-959, File Transfer Protocol, October 1985,
with the following FTP commands mandated for reception: Store
unique (STOU) and Abort (ABOR)

 √

3.2.1.1.1.4 Remote Terminal
IAB Standard 8/RFC-854/RFC-855, TELNET Protocol, May 1983 √

Volume IV Technical Reference Architecture 177

Table 16. JTA Standards (Cont’d)

Joint Technical Architecture Standards TENA Relationship
(Taken from the DoD JTA Version 1.0)

Facility System
Architecture

Technical
Architecture

TBD

3.2.1.1.1.5 Network Management
IAB Standard 15/RFC-1157, Simple Network Management
Protocol (SNMP), May 1990

 √

IAB Standard 16/RFC-1155/RFC-1212, Structure of Management
Information, May 1990

 √

IAB Standard 17/RFC-1213, Management Information Base,
March 1991

 √

3.2.1.1.1.6 Network Time
RFC-1305, Network Time Protocol (V3), April 9, 1992 √

3.2.1.1.1.7 Bootstrap Protocol (BOOTP)
RFC-951, Bootstrap Protocol, September 1, 1985 √
RFC-1533, DHCP Options and BOOTP Vendor Extensions,
October 8, 1993

 √

RFC-1542, Clarifications and Extensions for the Bootstrap
Protocol, October 27, 1993

 √

3.2.1.1.1.8 Dynamic Host Configuration Protocol (DHCP)
RFC-1541, Dynamic Host Configuration Protocol, October 27,
1993

 √

3.2.1.1.1.9 World Wide Web (WWW) Services

3.2.1.1.1.9.1 Hypertext Transfer Protocol (HTTP)
RFC-1945, Hypertext Transfer Protocol -- HTTP/1.0, May 17,
1996

 √

3.2.1.1.1.9.2 Uniform Resource Locator (URL)
RFC-1738, Uniform Resource Locators, December 20, 1994 √
RFC-1808, Relative Uniform Resource Locators, June 14, 1995 √

3.2.1.1.1.10 Connectionless Data Transfer
MIL-STD-2045-47001, Connectionless Data Transfer Application
Layer Standard, July 27, 1995

 √

3.2.1.1.2.1 Transmission Control Protocol (TCP)/User
Datagram Protocol (UDP) over Internet Protocol (IP)

3.2.1.1.2.1.1 Transmission Control Protocol (TCP)
addition, TCP shall implement the PUSH flag and the Nagle
Algorithm, as defined in IAB Standard 3

 √

Volume IV Technical Reference Architecture 178

Table 16. JTA Standards (Cont’d)

Joint Technical Architecture Standards TENA Relationship
(Taken from the DoD JTA Version 1.0)

Facility System
Architecture

Technical
Architecture

TBD

3.2.1.1.2.1.2 User Datagram Protocol (UDP)
IAB Standard 6/RFC-768, User Datagram Protocol, August 1980 √

3.2.1.1.2.1.3 Internet Protocol (IP)
IAB Standard 5/RFC-791/RFC-950/RFC-919/RFC-922/RFC-
792/RFC-1112, Internet Protocol, September 1981

 √

3.2.1.1.2.2 Open Systems Interconnection (OSI)/Internet
Interworking Protocol
IAB Standard 35/RFC 1006, ISO Transport Service on top of the
TCP, May 1978

 √

3.2.1.2 Video Teleconferencing (VTC) Standards
VTC001, Industry Profile for Video Teleconferencing, Revision 1,
April 25, 1995

 √

ITU-T H.324, Terminal for Low Bit Rate Multimedia
Communications, March 19, 1996

 √

3.2.1.3 Facsimile Standards

3.2.1.3.1 Analog Facsimile Standard
TIA/EIA-465-A, Group 3 Facsimile Apparatus for Document
Transmission, March 21, 1995

 √

TIA/EIA-466, Procedures for Document Facsimile Transmission,
May 1981

 √

3.2.1.3.2 Digital Facsimile Standard
MIL-STD 188-161D, Interoperability and Performance Standards
for Digital Facsimile Equipment, January 10, 1995

 √

3.2.2 Network Standards

3.2.2.1 Router Standards
RFC-1812, Requirements for IP Version 4 Routers, June 22, 1995 √
IAB Standard 6/RFC-768, User Datagram Protocol, August 1980 √
IAB Standard 7/RFC-793, Transmission Control Protocol,
September 1981

 √

IAB Standard 8/RFC-854/RFC-855, TELNET Protocol, May 1983 √

Volume IV Technical Reference Architecture 179

Table 16. JTA Standards (Cont’d)

Joint Technical Architecture Standards TENA Relationship
(Taken from the DoD JTA Version 1.0)

Facility System
Architecture

Technical
Architecture

TBD

IAB Standard 13/RFC-1034/RFC-1035, Domain Name System,
November 1987

 √

IAB Standard 15/RFC-1157, Simple Network Management
Protocol, May 1990

 √

IAB Standard 16/RFC-1155/RFC-1212, Structure of Management
Information, May 1990

 √

IAB Standard 17/RFC-1213, Management Information Base,
March 1991

 √

RFC-951, Bootstrap Protocol, September 1, 1985 √
RFC-1533, DHCP Options and BOOTP Vendor Extensions,
October 8, 1993

 √

RFC-1541, DHCP, October 27, 1993 √
RFC-1542, Clarifications and Extensions for the Bootstrap
Protocol, October 27, 1993

 √

IAB Standard 33/RFC-1350, Trivial FTP (TFTP), July 1992, to be
used for initialization only

 √

3.2.2.1.1 Internet Protocol (IP)
IAB Standard 5/RFC-791/RFC-950/RFC-919/RFC-922/RFC-
792/RFC-1112, Internet Protocol, September 1981

 √

3.2.2.1.2 IP Routing

3.2.2.1.2.1 Interior Routers
RFC-1583, Open Shortest Path First Routing Version 2, March 23,
1994, for unicast routing

 √

RFC-1584, Multicast Extensions to OSPF, March 24, 1994, for
multicast routing

 √

3.2.2.1.2.2. Exterior Routers
RFC-1771, Border Gateway Protocol 4, March 21, 1995 √
RFC-1772, Application of BGP-4 In the Internet, March 21, 1995 √

 √
3.2.2.2 Subnetworks

3.2.2.2.1 Local Area Network (LAN) Access
ISO/IEC 8802-3:1993, Carrier Sense Multiple Access with
Collision Detection (CSMA/CD) Access Method and Physical
Layer Specifications, 10BaseT Medium-Access Unit (MAU)

 √

IAB-Standard 41/RFC-894, Standard for the Transmission of IP
Datagrams Over Ethernet Networks, April 1984

 √

IAB Standard 37/RFC-826, An Ethernet Address Resolution
Protocol, November 1982

 √

Volume IV Technical Reference Architecture 180

Table 16. JTA Standards (Cont’d)

Joint Technical Architecture Standards TENA Relationship
(Taken from the DoD JTA Version 1.0)

Facility System
Architecture

Technical
Architecture

TBD

3.2.2.2.2 Point to Point Standards
IAB Standard 51/RFC-1661/RFC-1662, Point-to-Point Protocol
(PPP), July 1994

 √

RFC-1332, PPP Internet Protocol Control Protocol (IPCP), May
26, 1992

 √

RFC-1333, PPP Link Quality Monitoring, May 26, 1992 √
RFC-1334, PPP Authentication Protocols, October 20, 1992 √
RFC-1570, PPP Link Control Protocol (LCP) Extensions, January
11, 1994

 √

EIA 232E, Interface Between Data Terminal Equipment and Data
Circuit Terminating Equipment Employing Serial Binary Data
Interchange, July 1991

 √

EIA 449, General Purpose 37-Position and 9-Position Interface for
Data Terminal Equipment and Data Circuit Terminating
Equipment Employing Serial Binary Data Interchange, February
19

 √

EIA 530A, High Speed 25-Position Interface for Data Terminal
Equipment and Data Circuit Terminating Equipment, June 1992,
Including Alternate 26-Position Connector, 1992

 √

3.2.2.2.4 Integrated Services Digital Network (ISDN)
ANSI T1.601, Telecommunications - Integrated Services Digital
Network (ISDN) - Basic Access Interface for Use on Metallic loops
for Application on the Network Side of the NT (Layer 1
Specification), 1992

 √

ANSI T1.408, Telecommunications - Integrated Services Digital
Network (ISDN) - Primary Rate - Customer Installation Metallic
Interfaces (Layer 1 Specification), 1990

 √

ITU-T Q.921, ISDN User-Network Interface - Data Link Layer
Specification - Digital Subscriber Signaling System No. 1, 1993

 √

ITU-T Q.931, ISDN User-Network Interface Layer 3 Specification
for basic Call Control - Digital Subscriber Signaling System No.
1(DSS 1), Network Layer, User-Network Management, 1989

 √

ITU-T E.164, Numbering Plan for the ISDN Era, 1991 √
DCAC 370-175-13, Defense Switched Network System Interface
Criteria, section titled Worldwide Numbering and Dialing Plan
(WNDP), September 1993

 √

RFC-1356, Multiprotocol Interconnect on X.25 and ISDN in the
Packet Mode, August 6, 1992.

 √

For transmitting IP packets using Point-to-Point Protocol (PPP)
over ISDN RFC-1618, PPP over ISDN, May 13, 1994

 √

Volume IV Technical Reference Architecture 181

Table 16. JTA Standards (Cont’d)

Joint Technical Architecture Standards TENA Relationship
(Taken from the DoD JTA Version 1.0)

Facility System
Architecture

Technical
Architecture

TBD

3.2.2.2.5 Asynchronous Transfer Mode (ATM)
ATM Forum's UNI Specification V 3.1, User-Network Interface,
September 1994

 √

ANSI T1.630 ATM Adaptation Layer for Constant Bit Rate
Services Functionality and Specification, 1993

 √

ANSI T1.635 ATM Adaptation Layer Type 5 Common Part
Functions and Specifications, 1994, which adopts ITU-T I.363,
section 6

 √

RFC-1577, Classical IP and Address Resolution Protocol (ARP)
over ATM, January 20, 1994

 √

3.2.3 Transmission Media

3.2.3.1 Military Satellite Communications (MILSATCOM)

3.2.3.1.1 Ultra High Frequency (UHF) Satellite Terminal
Standards

3.2.3.1.1.1 5- and 25-kHz Service
MIL-STD-188-181, Interoperability Standard for Dedicated 5-kHz
and 25-kHz UHF Satellite Communications, 18 September 1992

 √

3.2.3.1.1.2 5-kHz Demand Assigned Multiple Access (DAMA)
Service
MIL-STD-188-182, Interoperability Standard for 5 kHz UHF
DAMA Terminal Waveform, 18 September 1992

 √

3.2.3.1.1.3 25-kHz Time Division Multiple Access
(TDMA)/Demand Assigned Multiple Access (DAMA) Service
MIL-STD-188-183, Interoperability Standard for 25 kHz
UHF/TDMA/DAMA Terminal Waveform, 18 September 1992

 √

3.2.3.1.1.4 Data Control Waveform
MIL-STD-188-184, Interoperability and Performance Standard for
the Data Control Waveform, 20 August 1993

 √

3.2.3.1.2 Super High Frequency (SHF) Satellite Terminal
Standards

Volume IV Technical Reference Architecture 182

Table 16. JTA Standards (Cont’d)

Joint Technical Architecture Standards TENA Relationship
(Taken from the DoD JTA Version 1.0)

Facility System
Architecture

Technical
Architecture

TBD

3.2.3.1.2.1 Earth Terminals
MIL-STD-188-164, Interoperability and Performance Standards
for C-Band, X-Band, and Ku-Band SHF Satellite Communications
Earth Terminals, 13 January 1995

 √

3.2.3.1.2.2 Phase Shift Keying (PSK) Modems
MIL-STD-188-165, Interoperability and Performance Standards
for SHF Satellite Communications PSK Modems (Frequency
Division Multiple Access (FDMA) Operations), January 13, 1995

 √

3.2.3.1.3 Extremely High Frequency (EHF) Satellite Payload
and Terminal Standards

3.2.3.1.3.1 Low Data Rate (LDR)
MIL-STD-1582, EHF LDR Uplinks and Downlinks, December 10,
1992

 √

3.2.3.1.3.2 Medium Data Rate (MDR)
MIL-STD-188-136, EHF MDR Uplinks and Downlinks, August
26, 1995

 √

3.2.3.2 Radio Communications

3.2.3.2.1 High Frequency (HF)

3.2.3.2.1.1 Automated Link Establishment (ALE)
MIL-STD-188-141A, Medium and High Frequency Radio
Equipment Standard, September 10, 1993

 √

3.2.3.2.1.2 Anti-jamming Capability
MIL-STD-188-148, Interoperability Standard Anti-Jam
Communications (2-30 Mhz), April 13, 1992

 √

3.2.3.2.1.3 Data Modems
MIL-STD-188-110A, Data Modems, Interoperability and
Performance Standards, September 30, 1991

 √

3.2.3.2.2 Very High Frequency (VHF)
MIL-STD-188-242, Tactical Single Channel (VHF) Radio
Equipment, June 20, 1985

 √

Volume IV Technical Reference Architecture 183

Table 16. JTA Standards (Cont’d)

Joint Technical Architecture Standards TENA Relationship
(Taken from the DoD JTA Version 1.0)

Facility System
Architecture

Technical
Architecture

TBD

3.2.3.2.3 Ultra High Frequency (UHF)
MIL-STD-188-243, Tactical Single Channel (UHF) Radio
Communications, March 15, 1989

 √

3.2.3.2.4 Super High Frequency (SHF)
MIL-STD-188-145, Digital Line-of-Sight (LOS) Microwave Radio
Equipment, July 28, 1992

 √

3.2.3.2.5 JTIDS/MIDS Transmission Media
JTIDS System Segment Specification (Class 2 Terminal)- √
STANAG 4175, Edition 1, 29 August 1991 - Technical
Characteristics of the Multifunctional Information Distribution
System (MIDS)

 √

3.2.3.3 Synchronous Optical Network (SONET) Transmission
Facilities
ANSI T1.105, Telecommunications - Synchronous Optical
Network (SONET) Basic Description Including Multiplex
Structure, Rates and Formats (ATIS) (Revision and Consolidation
of ANSI T1.105-1991 and ANSI T1.105A-1991), 1995

 √

ANSI T1.107 Digital Hierarchy - Formats Specifications, 1995 √
ANSI T1.117, Digital Hierarchy - Optical Interface Specifications
(SONET) (Single Mode - Short Reach), 1991

 √

3.3.2.1 Internet Standards
RFC-1883, IPv6 Specification √
RFC-1884, IPv6 Addressing Architecture √
RFC-1885, ICMPv6 for IPv6 √
RFC-1886, DNS Extensions to support IPv6 √

3.3.2.2 Video Teleconferencing (VTC) Standards
ITU H.321 VTC over ATM √
ITU H.323 VTC Ethernet networks √

3.3.2.3 Global Positioning System (GPS)
ASD Command, Control, Communications, and Intelligence (C3I)
Memorandum Development, Procurement, and Employment of
DoD Global Position System, User Equipment, dated 31 April
1992

 √

Volume IV Technical Reference Architecture 184

Table 16. JTA Standards (Cont’d)

Joint Technical Architecture Standards TENA Relationship
(Taken from the DoD JTA Version 1.0)

Facility System
Architecture

Technical
Architecture

TBD

3.3.3 Network Standards

3.3.3.1 Network Access Protocols
IEEE 802.11 Wireless LAN √
IEEE 802.3u Fast Ethernet √
ATM LAN Emulation, Version 1.0 √
IS-41 Public switched telephone networks (PSTN) √
IS-54 TDMA √
IS-95 Code Division Multiple Access (CDMA) √
Future Public Land Mobile Telecommunications Systems
(FPLMTS) standards

 √

3.3.3.2 Link 22 Transmission Standards
Link 22 Transmission media, standard is under development √

3.3.4 Military Satellite Communications (MILSATCOM)
MIL-STD-188-166 (Interface Standard, Interoperability and
Performance of Non-Electronic Protective Measures (EPM) for
SHF SATCOM Link Control Protocols and Messaging Standards)

 √

MIL-STD-188-167 (Interface Standard, Message Format for SHF
SATCOM Demand Assignment)

 √

MIL-STD-188-168 (Interface Standard, Interoperability and
Performance Standards for SHF Satellite Communications
Mulitplexers and Demultiplexers)

 √

MIL-STD-188-185 (Interface Standard, Interoperability of UHF
MILSATCOM DAMA Control System).

 √

4.2 MANDATES
4.2.1 Activity Model
FIPS PUB 183, Integration Definition for Function Modeling
(IDEF0).

 √

4.2.2 Data Model
DoD Manual 8320.1-M-1, DoD Data Standardization Procedures √
FIPS PUB 184, Integration Definition For Information Modeling
(IDEF1X). December 1993.

 √

4.2.3 DoD Data Definitions
DoD Manual 8320.1-M-1, DoD Data Standardization Procedures √
Defense Data Dictionary System (DDDS). √

Volume IV Technical Reference Architecture 185

Table 16. JTA Standards (Cont’d)

Joint Technical Architecture Standards TENA Relationship
(Taken from the DoD JTA Version 1.0)

Facility System
Architecture

Technical
Architecture

TBD

4.2.4.2 Tactical Information Standards
4.2.4.2.1 Bit-Oriented Data
VMF Technical Interface Design Plan - Test Edition (TIDP-TE),
Reissue 1 February 1995.

 √

4.2.4.2.2 US Message Text Format (USMTF) Messages
MIL-STD-6040, United States Message Text Format (USMTF) √

4.2.4.2.3. Database-to-Database Exchange
Database-to-Database Exchange shall use standard data elements
from DDDS

 √

4.3 EMERGING STANDARDS
4.3.2 Data Modeling
IDEF1X97, Conceptual Schema Modeling (standard for data
modeling)

 √

4.3.4 Information Standards
Multi-functional Information Distribution System (MIDS) √

5.2.2 Style Guides
5.2.2.1 Commercial Style Guides
Open Software Foundation (OSF)/MotifÔ Style Guide, Revision
1.2 (OSF 1992)

 √

The WindowsÔ Interface: An Application Design Guide, Microsoft
Press, 1992

 √

5.2.2.3 Domain-level Style Guides
User Interface Specification for the Defense Information
Infrastructure (DII), June 1996.

 √

5.3 EMERGING STANDARDS
MIL-STD-2525A - This standard provides common warfighting
symbology

 √

6.2.2 Information Processing Security Standards
6.2.2.1 Application Software Entity Security Standards
DoD 5200.28-STD, The DoD Trusted Computer System
Evaluation Criteria, December 1985.

 √

NCSC-TG-021, Version 1, Trusted Database Management System
Interpretation, April 1991.

 √

Volume IV Technical Reference Architecture 186

Table 16. JTA Standards (Cont’d)

Joint Technical Architecture Standards TENA Relationship
(Taken from the DoD JTA Version 1.0)

Facility System
Architecture

Technical
Architecture

TBD

FORTEZZA Application Implementors' Guide, MD4002101-1.52,
5 March 1996

 √

FORTEZZA Cryptologic InterfaceProgrammers' Guide,
MD4000501-1.52, 30 January 1996.

 √

6.2.2.2.1 Data Management Services
NCSC-TG-021, Version 1, Trusted Database Management System
Interpretation, April 1991.

 √

6.2.2.2.2.2 Authentication Security Standards
RFC-1510, The Kerberos Network Authentication Service, V.5, 10
September 1993

 √

6.2.3 Information Transfer Security Standards
6.2.3.1 End System Security Standards
6.2.3.1.1 Host Security Standards
FORTEZZA Interface Control Document, Revision P1.5, 22
December 1994

 √

FORTEZZA Plus Interface Control Document, Release 3.0, 1 June
1995

 √

6.2.3.1.1.1 Security Algorithms
Key Exchange Algorithm, NSA, R21-TECH-23-94, 12 July 1994 √

6.2.3.1.1.2 Security Protocols
SDN.903, revision 3.2, Secure Data Network System (SDNS) Key
Management Protocol (KMP), August 1, 1989

 √

6.2.3.1.1.3 Evaluation Criteria Security Standards
NCSC-TG-005, Version-1, Trusted Network Interpretation, July
1987

 √

6.2.3.2 Network Security Standards
6.2.3.2.1 Internetworking Security Standards
SDN.301, revision 1.5, Secure Data Network System (SDNS)
Security Protocol 3 (SP3), 1989

 √

Volume IV Technical Reference Architecture 187

Table 16. JTA Standards (Cont’d)

Joint Technical Architecture Standards TENA Relationship
(Taken from the DoD JTA Version 1.0)

Facility System
Architecture

Technical
Architecture

TBD

6.3.2 Information Processing Security Standards
6.3.2.1 Application Software Entity Security Standards
6.3.2.1.1 Evaluation Criteria Security Standards
Common Criteria for Information Technology Security Evaluation √

6.3.2.2 Application Platform Entity Security Standards
6.3.2.2.1 Software Engineering Services Security
6.3.2.2.1.1 Generic Security Service (GSS)-Application
Program Interface (API) Security
RFC-1508 defines GSS-API services and primitives at a level
independent of underlying mechanism and programming language
environment

 √

6.3.2.2.1.2 POSIX Security Standards
IEEE P1003.1e, POSIX Part 1: System API - Protection, Audit,
and Control Interfaces [C Language], Draft 15 (reballot March
1996)

 √

IEEE P1003.2c, POSIX Part 2: Shell and Utilities - Protection and
Control Interfaces, Draft 15 (reballot March 1996)

 √

6.3.2.2.2.2 Authentication Security Standards
RFC-1938, A One-Time Password System √

6.3.2.2.3 Distributed Computing Services Security Standards
The Common Object Request Broker Architecture (CORBA),
OMG 95-12-1, December 1995.

 √

6.3.3 Information Transfer Security Standards
6.3.3.1 End System Security Standards
6.3.3.1.1 Host Security Standards
6.3.3.1.1.1 Security Protocols
Common Internet Protocol (IP) Security Options (CIPSO) of the
following emerging standard is expected to adopt MIL-STD-2045-
48501, Common Security Label: Trusted Systems Interoperability
Group (TSIG) Trusted Information Exchange for Restricted
Environment

 √

ISP-421, Revision 1.0: The ISDN Security Program (ISP) Security
Association Management Protocol (SAMP), 15 May 1994

 √

IEEE 802.10c/D13, Standard for Interoperable LAN Security-Part
C: Key Management

 √

Volume IV Technical Reference Architecture 188

Table 16. JTA Standards (Cont’d)

Joint Technical Architecture Standards TENA Relationship
(Taken from the DoD JTA Version 1.0)

Facility System
Architecture

Technical
Architecture

TBD

IEEE 802.10g/D7, Standard for Interoperable LAN Security - Part
G: Standard for Security Labeling within Secure Data Exchange

 √ x

6.3.3.1.1.2 Public Key Infrastructure Security Standards
FIPS PUB JJJ is based on ISO/IEC 9798-3: 1993, Entity
Authentication Using a Public Key System

 √

6.3.3.2 Network Security Standards
6.3.3.2.1 Internetworking Security Standards
RFC-1825, "Security Architecture for the Internet Protocol," R.
Atkinson, August 1995.

 √

RFC-1826, "IP Authentication Header (AH)," R. Atkinson, August
1995

 √

RFC-1827, "IP Encapsulating Security Payload (ESP)," R.
Atkinson, August 1995

 √

IEEE 802.10a, Standard for Interoperable LAN Security √

Table 17. Range Commanders Council Standards and Protocol Source Documents

Range Commanders Council Source Documents

Document Title Document Number

Underwater Acoustic Frequency Standardization 400-72
Standard Electronic Attack Clearance Request For Ranges Inter-Range Instrumentation Group

(IRIG) Standard 703-94
Video Standards and Formats 452-86
Telemetry Standards IRIG Standard 106-96
Flight Termination Systems Commonality Standard Standard 319-92
General Principles of Digital Filtering and a Survey of Filters in Current Range
Use

155-91

IRIG Standards for Distributing Raw Radar Antenna Data IRIG Standard 154-71
IRIG Standard for Distributing Interrange Vector Acquisition Data IRIG Standard 152-83
Global Coordinate System 151-85
Long Haul Communications Requirements 211-92

Volume IV Technical Reference Architecture 189

Table 17. Range Commanders Council Standards and Protocol Source Documents (Cont’d)

Range Commanders Council Source Documents

Document Title Document Number

Frequency Standards for Radar Transponders 250-91
Parallel Binary and Parallel Binary Coded Decimal Time Code Formats IRIG Standard 205-87
IRIG Standard Format for Interrange Exchange of Post-Mission Time-Space-
Position Information

IRIG Standard 167-95

Guidelines for Interrange Graphics Capabilities 165-95
IRIG Standard Format for Global Positioning System (GPS) Data For Post-
Operation Interrange Exchange

IRIG Standard 164-91

Design, Performance, and Test Standards for Flight Termination
Receivers/Decoders (Volumes 1 & 2)

IRIG Standard 313-94

Coherent C-Band Transponder Standard IRIG Standard 257-86
Noncoherent Transponder Standards IRIG Standard 254-94
Missile Antenna Pattern Coordinate System and Data Formats IRIG Standard 253-93
IRIG Tracking Radar Compatibility and Design Standards for G-Band (4 to 6
GHz) Radars

252-74

IRIG Standard For Pulse Repetition Frequencies and Reference Oscillator
Frequency for C-Band Radars

IRIG Standard 251-80

Operations Security (OPSEC) Standards 600-87

Volume IV Technical Reference Architecture 1

Appendix A-Acronyms

ACETEF Air Combat Environment Test and Evaluation Facility
AM Asset Manager
API Application Program Interface
ARPA Advanced Research Projects Agency
AWT Abstract Windowing Toolkit
BoOD Board of Operating Directors
CDAPS Common Data Analysis and Processing System
CTEIP Central Test and Evaluation Improvement Program
CTTRA Common Test and Training Range Architecture
DDM Data Distribution Management
DII-COE Defense Information Infrastructure-Common Operating

Environment
DISA Defense Information Systems Agency
DMS Digital Models and Simulations
DMSO Defense Modeling and Simulation Office
DoD Department of Defense
DS Distribution service
ECM Electronic Counter Measures
ESM Electronic Support Measures
EW Electronic Warfare
FOM Federation Object Model
GPS Global Positioning System
GUI Graphical User Interface
HPCMO High Performance Computing and Modernization Office
HCI Human Computer Interfaces
HITL Hardware-in-the-Loop
HLA High Level Architecture
HSE Hydrophone Support Electronics
IAC Initialization Asset Collection
ICC Information Class Catalog
IL Integration Laboratories
IPC Information Presenter Class
IFF Identify Friend or Foe
INS Inertial Navigation System
ISTF Installed Systems Test Facilities
IV&V Integrated Validation and Verification
JADS Joint Advanced Distributed Simulation
JIM Joint Improvement and Modernization
JISTF Joint Installed Systems Test Facility
JPO Joint Program Office
JRRC Joint Regional Range Complex
JSIMS Joint Simulation System

Volume IV Technical Reference Architecture 2

JTA Joint Technical Architecture
LAN Local Area Network
LRBPM Logical Range Business Process Model
MAC Master Asset Catalog
MLS Multi-Level Secure
M&S Modeling and Simulations
MF Measurement Facilities
NAWC-AD Naval Air Warfare Center Aircraft Division
NBC Nuclear Biological Chemical
NM Network Manager
NUWC Naval Undersea Warfare Center
OAR Open Air Ranges
OAM&P Operation Administration Maintenance & Provisioning
PLA Product Line Approach
QOS Quality Of Service
RA Requesting Asset
RCC Range Commanders Council
REDCAP Real-Time Digitally Controlled Analyzer Processor
REP Resource Enhancement Projects
RF Radio Frequency
RIN Range Inter-netting Networks
RTI Run Time Infrastructure (Usually HLA RTI)
TAFIM Technical Architecture Framework for Information Management
T&E Test and Evaluation
TD T Training Devices
TENA Test and Training ENabling Architecture
TERC Test and Evaluation Resource Council
TERIB Test and Evaluation Reliance Investment Board
TINA Telecommunications Information Networking Architecture
TRA Technical Reference Architecture
TRACS Transportable Range Augmentation and Control System
UTR Underwater Tracking Range
VTTR Virtual Test and Training Range
WAN Wide Area Network

Volume IV Technical Reference Architecture B-1

Appendix B-References

[Blaha, 1991] M. Blaha, F. Eddy, W. Lorensen, W. Premeriani, and J. Rumbaugh, “Object-Oriented
Modeling and Design,” Prentice Hall, Englewood Cliffs, NJ, 07632, 1991.

[Coad, 1991] P. Coad and E. Yourdon, “Object-Oriented Analysis,” Yourdon Press, Englewood
Cliffs, NJ, 1991.

[JTA, 1996] Joint Technical Architecture (JTA) Standards, Version 1.0, August 22, 1996
{http://www-jta.itsi.disa.mil/jta/jtacover.html}.

[RCC, 1997] Range Commanders Council Standards and Protocol Source Documents, June 1997
{http:// tecnet0.jcte.jcs.mil:9001/RCC/doculist.html

[Sun, 1997] “JAVA Development Kit,” Sun Microsystems, Inc. Mountain View, Ca, 1997
{http://www.javasoft.com/products/jdk/1.1/docs/index.html}

[TAFIM, 1994] Technical Architecture Framework for Information Management (TAFIM), Version
2.0, June 30, 1994 {http://dtic.dla.mil/c3i/tafim.html}.

Volume IV Technical Reference Architecture C-1

Appendix C-TENA Core Capabilities Details

Volume IV Technical Reference Architecture D-1

Appendix D-Application Program Interface (API) to Distribution Services

Volume IV Technical Reference Architecture E-1

Appendix E-TENA Object Model Diagrams

